

20 Recipes for Programming MVC 3

Jamie Munro

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

20 Recipes for Programming MVC 3
by Jamie Munro

Copyright © 2011 Jamie Munro. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Shawn Wallace and Mike Hendrickson
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2011-09-27 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449309862 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. 20 Recipes for Programming MVC 3, the image of a Garganey duck, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30986-2

[LSI]

1317043462

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449309862

To my wife and kids: you are a dream come true!

Table of Contents

Preface . vii

The Recipes . 1
1.1 Restricting Access to Views with Password Protection 1
1.2 Automating Generation of Controllers and Views 5
1.3 Validating User Input 9
1.4 Implementing Multiple Languages 13
1.5 Sending a Welcome Email 21
1.6 Retrieving a Forgotten Password 24
1.7 Sorting a List of Results 30
1.8 Paging Through a List of Results 34
1.9 Filtering a List of Results 39

1.10 Searching a List of Results by Keyword 45
1.11 Uploading a File Through a Form 50
1.12 Resizing an Image to Create a Thumbnail 57
1.13 Implementing Ajax to Enhance the User Experience 60
1.14 Submitting a Form with Ajax 67
1.15 Enabling a CAPTCHA 74
1.16 Mobilizing Your Website 78
1.17 Paging Through Content Without the Pages 85
1.18 Displaying Search Results While Typing 89
1.19 Routing Users to a Specific Controller and Action 94
1.20 Caching Results for Faster Page Loads 101
1.21 Going Further 106

v

Preface

About The Book
The goal of a Model-View-Controller (MVC) framework is to allow developers to easily
separate their code in distinct aspects to simplify development tasks. The model layer
allows us to integrate with data; usually a database table. The view layer allows us to
represent our data in a visual fashion using a combination of HTML and CSS. The
controller layer is the middleman between the model and view. The controller is used
to retrieve data from a model and make that data available for a view.

The goal of this book is to provide web developers a cookbook of “recipes” that are
required by many developers on a day-to-day basis. Each code sample contains a com-
plete working example of how to implement authentication, email, AJAX, data vali-
dation, and many other examples. You will quickly find yourself referring to one of
these samples for every website that you build.

Prerequisites
Before beginning with this book, it is important to have a good understanding of web
development. This book is heavily focused on providing useful code samples. Each
code sample is well described; however, it is assumed that the reader is already familiar
with many aspects of web development.

I would highly recommend reviewing ASP.NET’s MVC website before starting. Within
a few quick minutes you will be up-to-speed and ready to go—it’s that easy.

vii

http://www.asp.net/mvc

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Tools
There are many Integrated Development Environments (IDEs) available on the Inter-
net. I have several favorites; one for each language that I develop in. For example, if
I’m developing in PHP, I really like PHPStorm by Jet Brains. When I’m developing
in .NET, there is only one clear choice: Microsoft Visual Studio.

If you are an individual just looking to get started, I would recommend the express
edition: http://www.microsoft.com/express/Downloads/. It’s available for free, you sim-
ply need to register within 30 days of use. I would also suggest that you download and
install SQL Server 2008 R2 Express as well.

Visual Studio Developer Express will allow us to create and maintain our projects, while
SQL Server Express will allow us to create and maintain our databases. All rich Internet
applications these days contain a database of some sort to store data captured from
user input.

At the time of writing this book, the current version of Visual Studio does not contain
MVC 3 templates by default. These need to be downloaded before you begin. Visit
ASP.NET’s MVC web page to download and install it.

viii | Preface

http://www.microsoft.com/express/Downloads/
http://www.asp.net/mvc

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

Not all code is optimized for best performance or error handling. Regions are used
throughout the examples to allow the code to be suppressed in future examples. Partial
views are used as well to help separate the code between recipes and focus more on the
changes.

All code, data and examples can be downloaded from our the book’s
web page at http://www.oreilly.com/catalog/0636920021407.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “20 Recipes for Programming MVC 3 by
Jamie Munro (O’Reilly). Copyright 2011 Jamie Munro, 978-1-449-30986-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Preface | ix

http://www.oreilly.com/catalog/0636920021407
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/0636920021407/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

x | Preface

http://www.oreilly.com/catalog/0636920021407/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The Recipes

1.1 Restricting Access to Views with Password Protection
Problem
You want to prevent access to specific pages of your website unless a user has registered
and logged in with a username and password.

Solution
Implement ASP.NET’s AuthorizeAttribute, FormsAuthentication, and Membership cre-
ation/validation through the use of an AccountController, AccountModels, and several
MVC views.

Discussion
The MVC team at Microsoft have made a lot of improvements to the AccountControl
ler. It has been updated to use FormsAuthentication along with the Membership class to
create new users, validate existing users, and create cookies to check the logged in state
of users.

Unlike MVC 2, in version 3, the new project dialog has been updated to provide several
different start up applications: Empty, Internet Application, and Intranet Application.
An empty application will set up your folder structure required for MVC. An Internet
Application, the default template, will create an MVC application with several features
pre-configured, including a basic layout and an AccountController that contains mul-
tiple actions to register and log users the application. The third template, Intranet Ap-
plication, is quite similar to the Internet Application with the exception that instead of
using the Membership class, it will use Windows Authentication.

For most websites, the default Internet Application should be used. If you haven’t al-
ready done so, create a new MVC 3 Internet Application now. This will generate an
AccountController, AccountModels, and several Account views that contain forms for
users to register, log in, and change their password with.

1

It is important to note the name of your new MVC application.
Throughout the examples in this book, the namespace will be Mvc
Application4. If your application name is different, all of the namespaces
in the subsequent examples must be updated to reflect your
namespace.

To prevent users from accessing certain views, MVC provides an AuthorizeAttribute
that is placed in a controller above the action requiring the user to be logged in to view
the particular content. Open the AccountController and you will see that this is done
here:

 //
 // GET: /Account/ChangePassword

 [Authorize]
 public ActionResult ChangePassword()
 {
 return View();
 }

When a user attempts to access the page /Account/ChangePassword, if they have not
previously logged in or registered on your website, MVC will automatically redirect
them to the login page. If they have already logged in, no redirect will take place and
the view will be displayed to them. The URL that the user is redirected to when not
logged in is defined in the Web.config file here:

 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn" timeout="2880" />
 </authentication>

If the user has never registered before, they will end up at the registration page. The
default registration collects the following information:

• Username

• Email Address

• Password

The functionality that creates a new Membership for the user is completed inside the
AccountController in the Register function. The Register function accepts one pa-
rameter called model that is of type RegisterModel. In the AccountModels, there is a class
definition called RegisterModel that defines public variables for each of the form ele-
ments on the register page.

It’s important to ensure that every time a model is being posted through
a form that one of the first conditional checks is for Model
State.IsValid. In a future example, when validation is implemented,
this boolean field verifies that the data entered through the form is valid
data and matches the model definition.

2 | The Recipes

 [HttpPost]
 public ActionResult Register(RegisterModel model)
 {
 if (ModelState.IsValid)
 {
 // Attempt to register the user
 MembershipCreateStatus createStatus;
 Membership.CreateUser(model.UserName,
 model.Password, model.Email, null, null,
 true, null, out createStatus);

 if (createStatus ==
 MembershipCreateStatus.Success)
 {
 FormsAuthentication.SetAuthCookie(
 model.UserName,
 false /* createPersistentCookie */);
 return RedirectToAction("Index", "Home");
 }
 else
 {
 ModelState.AddModelError("",
 ErrorCodeToString(createStatus));
 }
 }

 // If we got this far, something failed,
 // redisplay form
 return View(model);
 }

The above code was generated automatically, and does three important things:

1. Creates a new user through the Membership.CreateUser() function with the data
that was entered by the user.

2. Ensures that the user was successfully created, and if so, a FormsAuthentica
tion.SetAuthCookie is set that is used to validate the user on subsequent page calls.

3. If the user was created successfully, the user is redirected back to the homepage
(or if there was an error creating the user, an error message is set and passed to the
view and is redisplayed with an error message to the user).

If you have installed the full version of Visual Studio, SQL Express is also installed
allowing you to view your databases that are created. However, if you have only in-
stalled the basic version of Visual Studio, SQL Express can be downloaded from Mi-
crosoft for free as well.

The default database connection defined in the Web.config will create a SQL Express
database in the App_Data folder of the application. This local SQL Express database will
contain the various tables required by the Membership class to store the users, profile
data, roles, etc., for the application.

1.1 Restricting Access to Views with Password Protection | 3

 <connectionStrings>
 <add name="ApplicationServices"
 connectionString="data source=.\SQLEXPRESS;
 Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

When a user visits the website again in the future, if the FormsAuthentication cookie is
still present (because they chose the “remember me” option during login—or they
didn’t close their web browser) then the content will be displayed to them without
being required to log in or register. However, if the cookie isn’t present, but the user
has already registered, they will be redirected to the login page. Once the user enters
their login information and submits the form, the AccountController will once again
handle the processing to validate the user through the Membership class. This is shown
here:

 [HttpPost]
 public ActionResult LogOn(LogOnModel model,
 string returnUrl)
 {
 if (ModelState.IsValid)
 {
 if (Membership.ValidateUser(model.UserName,
 model.Password))
 {
 FormsAuthentication.SetAuthCookie(
 model.UserName, model.RememberMe);
 if (Url.IsLocalUrl(returnUrl)
 && returnUrl.Length > 1
 && returnUrl.StartsWith("/")
 && !returnUrl.StartsWith("//")
 && !returnUrl.StartsWith("/\\"))
 {
 return Redirect(returnUrl);
 }
 else
 {
 return RedirectToAction("Index", "Home");
 }
 }
 else
 {
 ModelState.AddModelError("",
 "The user name or password provided
 is incorrect.");
 }
 }

 // If we got this far, something failed,
 // redisplay form
 return View(model);
 }

4 | The Recipes

The above code, once again automatically generated, does three important things:

1. Validates the user through the Membership.ValidateUser() function with the user-
name and password entered.

2. If the login was successful, a FormsAuthentication.SetAuthCookie is set.

3. If the user was validated, the user is redirected back to the homepage (or if they
were not validated, an error message is set and passed to the view that is redisplayed
with an error message to the user).

The AuthorizeAttribute also provides further restriction options by limiting pages to
certain groups or even only certain users. This can be accomplished as follows:

 // Retrieve a list of all users to allow an admin
 // to manage them
 [Authorize(Roles = "Admin")]
 public ActionResult UserAdmin()
 {
 MembershipUserCollection users =
 Membership.GetAllUsers();
 return View(users);
 }

 // Create some custom reports for me only
 [Authorize(Users = "Jamie")]
 public ActionResult JamieAdmin()
 {
 // Perform some logic to generate usage reports
 ...
 return View();
 }

These simple examples are merely the beginning of how content can be restricted. Some
next steps would be to consider exploring adding custom groups to further advance
the definition of the access control.

See Also
AuthorizeAttribute, FormsAuthentication, and Membership

1.2 Automating Generation of Controllers and Views
Problem
You want to allow dynamic content to be managed through your website.

Solution
Automatically generate a controller and multiple views through scaffolding allowing
users to Create, Read, Update, and Delete (also known as CRUD) data with the Entity
Framework Code-First and Database-First approaches.

1.2 Automating Generation of Controllers and Views | 5

http://msdn.microsoft.com/en-us/library/system.web.mvc.authorizeattribute.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.formsauthentication.aspx
http://msdn.microsoft.com/en-us/library/system.web.security.membership.aspx

Discussion
Before the controller and views can be scaffolded, a model and DbContext need to be
created that define what data is to be collected (hence the Code-First approach). In the
following example, two classes are created that will provide the ability to manage a list
of books. The first class contains the definition of the book data that will be stored in
the SQL Express database. The second class contains the DbContext that creates a
DbSet of the Book class. To create the model, right click on the Models folder and select
Add→Class. In the filename field type: Book.cs and replace the generated class with the
following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;

namespace MvcApplication4.Models
{
 public class Book
 {
 public int ID { get; set; }
 public string Title { get; set; }
 public string Isbn { get; set; }
 public string Summary { get; set; }
 public string Author { get; set; }
 public string Thumbnail { get; set; }
 public double Price { get; set; }
 public DateTime Published { get; set; }
 }

 public class BookDBContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }
}

With the Book model and BookDBContext created, the scaffolding of the controller and
view can now be completed. To begin, right click on the Controllers folder and select
Add→Controller (see Figure 1-1).

People have different naming conventions for controllers. As much as
possible, I attempt to use a plural name for my controller and a singular
name for my model classes. The reasoning behind this is the controller
provides the ability to view, add, edit, and delete one or more books;
while the model pertains to a single book record.

As you can see in the above picture, the new controller is named BooksController. From
the template dropdown, choose a controller with read/write actions and views, using

6 | The Recipes

the Entity Framework. The model class is the previously created Book class and the Data
context class is the previously created BookDBContext class. Razor is the default type for
the views, so this can be left as-is. Once you have filled out and entered the correct
information, press Add and wait several seconds as the files are created (see Figure 1-2).

If you see an error underneath the model class indicating no models can
be found, try building or running the solution first, then try again.

Figure 1-1. Adding a new controller

1.2 Automating Generation of Controllers and Views | 7

The Entity Framework also provides the ability to scaffold controllers and views by
using a different method, Database-First. This is done by creating an Entity Data Model
to an already existing database. In large projects, it is quite common to separate based
on the strength of the resources available. For example, a good front-end web developer
might not be an expert at database design. So the task of designing a database will be
given to an expert.

In the next example, a connection to the previously created database containing the
Books table will be created and scaffolded from that instead of a model. Begin by cre-
ating a new application. The old application can be used again, but creating a new
application will allow you to decide your preference for creating models, Code-First or
Database-First.

Figure 1-2. Newly scaffolded files

8 | The Recipes

Once the application is created, right click on the Models folder and select Add→New
Item. In the search box in the top right corner, type Entity. From the search results,
select ADO.NET Entity Data Model. Update the name of the file to be BookModel
.edmx. Now it’s time to go through a wizard to set up the database connection:

1. Select Generate from database.

2. Select the New connection button.

3. Select Microsoft SQL Server from the drop-down and press Continue.

4. In the Connection Properties dialog, under Server Name, select your SQL Express
database.

5. Under the Connect to a database drop-down, select the database that was auto-
matically created by MVC in the last example and press OK.

Update the connection string for Web.config to be SQLExpressConnection and press
Next. A connection will be now made to the database. Expand the Tables and select
the Books table.

After selecting Finish, the new Entity Diagram is created under the Models directory.
Before the controller can be scaffolded, the solution must be built. Once the project is
built, just like in the Code-First example, right click on the Controllers folder and select
Add→Controller.

When adding the new controller in this approach, the Book is still the Model class;
however, for the Data context class, Entities is chosen instead which contains the
connection to the database.

In future recipes, the Code-First approach will be used to allow for more complete code
examples instead of requiring database tables to be manually created and allow for
more focus on MVC.

See Also
ADO.NET Entity Framework Overview

1.3 Validating User Input
Problem
You need to ensure that the data being captured in your form contains the data expected
based on your database or model design.

1.3 Validating User Input | 9

http://msdn.microsoft.com/en-us/library/aa697427(v=vs.80).aspx

Solution
.NET 4.0 contains a new DataAnnotations namespace that provides many useful met-
adata attribute classes that have been implemented in MVC 3. For the purpose of val-
idating form input the following attribute classes can be used to provide a wide variety
of validation options: RequiredAttribute, RegularExpressionAttribute, RangeAttri
bute, and DataTypeAttribute. When custom validation is required, MVC 3 also sup-
ports the improvements to the ValidationAttribute class allowing developer-defined
validation.

Discussion
The following example is going to extend the Code-First Book model that was created
in the previous recipe. It will be updated to ensure the following:

1. A book title is entered.

2. A valid ISBN is entered.

3. A book summary is entered.

4. An author of the book is entered.

5. A valid dollar amount for the price of the book is entered.

6. A valid published date is entered.

Five of the six validation requirements can be met with the built-in validation methods
provided with MVC 3. The ISBN validation; however, needs to be done in a different
format—it requires a custom validation method:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;
using System.ComponentModel.DataAnnotations;
using MvcApplication4.Validations;

namespace MvcApplication4.Models
{
 public class Book
 {
 public int ID { get; set; }

 [Required]
 public string Title { get; set; }

 [Required]
 [IsbnValidation]
 public string Isbn { get; set; }

 [Required]
 public string Summary { get; set; }

10 | The Recipes

 [Required]
 public string Author { get; set; }

 public string Thumbnail { get; set; }

 [Range(1, 100)]
 public double Price { get; set; }

 [DataType(DataType.Date)]
 [Required]
 public DateTime Published { get; set; }
 }

 public class BookDBContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }
}

In the above example, the [Required] data annotation was added above each field that
must be provided by the user. Above the ISBN number, [IsbnValidation] was also
added, informing MVC 3 that it must call the IsValid operation from the soon-to-be
created IsbnValidationAttribute class. To validate the price, the [Range] annotation
was used. This could also be accomplished with the [RegularExpression] attribute as
follows:

 [RegularExpression (@"(\b[\d\.]*)")]
 public double Price { get; set; }

Finally, the published date is validated by telling MVC that the DataType of this field is
a date. The IsbnValidation data attribute will currently be displaying an error because
this class has not been implemented. This class will be implemented in the following
example.

A valid ISBN is defined as 10 or 13 characters long. To help keep the code organized,
the custom validation will be placed in a separate folder where other custom validation
that might be needed can be added as well. Right click on the project and select
Add→New Folder. The folder should be named Validations. Once created, right click
on the new folder and select Add→Class. Name the class IsbnValidationAttribute.cs.
This class will extend the ValidationAttribute class and override the IsValid method to
perform validation on the ISBN number entered:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Text.RegularExpressions;

namespace MvcApplication4.Validations
{
 [AttributeUsage(AttributeTargets.Field |
 AttributeTargets.Property, AllowMultiple = false,
 Inherited = true)]

1.3 Validating User Input | 11

 public class IsbnValidationAttribute :
 System.ComponentModel.DataAnnotations.ValidationAttribute
 {
 /**
 * This class is courtesy:
 * http://www.java2s.com/Open-Source/CSharp/
 * Inversion-of-Control-Dependency-Injection/Spring.net/
 * Spring/Validation/Validators/ISBNValidator.cs.htm
 *
 * This class is used for demonstration purposes
 * of performing an ISBN validation. Should you
 * wish to use this in your project, please
 * consult the license agreement here:
 * http://www.apache.org/licenses/LICENSE-2.0
 **/

 private static readonly String SEP = "(?:\\-|\\s)";
 private static readonly String GROUP = "(\\d{1,5})";
 private static readonly String PUBLISHER = "(\\d{1,7})";
 private static readonly String TITLE = "(\\d{1,6})";

 static readonly String ISBN10_PATTERN =
 "^(?:(\\d{9}[0-9X])|(?:" + GROUP + SEP + PUBLISHER +
 SEP + TITLE + SEP + "([0-9X])))$";

 static readonly String ISBN13_PATTERN =
 "^(978|979)(?:(\\d{10})|(?:" + SEP + GROUP + SEP +
 PUBLISHER + SEP + TITLE + SEP + "([0-9])))$";

 public IsbnValidationAttribute() :
 base("Invalid ISBN number")
 {
 }

 public override bool IsValid(object value)
 {
 // Convert to string and fix up the ISBN
 string isbn = value.ToString();
 string code = (isbn == null)
 ? null :
 isbn.Trim().Replace("-", "").Replace(" ", "");

 // check the length
 if ((code == null) || (code.Length < 10
 || code.Length > 13))
 {
 return false;
 }

 // validate/reformat using regular expression
 Match match;
 String pattern;
 if (code.Length == 10)
 {

12 | The Recipes

 pattern = ISBN10_PATTERN;
 }
 else
 {
 pattern = ISBN13_PATTERN;
 }

 match = Regex.Match(code, pattern);
 return match.Success && match.Index == 0 &&
 match.Length == code.Length;
 }
 }
}

The above example contains a standard ISBN validation check provided as a demon-
stration from the CSharp Open Source example. If the ISBN matches one of the two
regular expression patterns, the IsValid function will return true; otherwise, it will
return false, requiring the user to try again.

If you go to the book’s create page in your web browser, when you press Submit, the
above error messages will appear until the form contains valid data. As you may recall
in the first recipe, this is done by checking that the ModelState.IsValid is equal to true.

See Also
DataAnnotations Namespace

1.4 Implementing Multiple Languages
Problem
The Internet is used by millions of people in hundreds of different countries and hun-
dreds of different languages; even English has multiple different dialects between Can-
ada, USA, and Great Britain. It is important to not limit the exposure of your website
by only offering your website in one language.

Solution
Create resource files and add all of the static text as key/value pairs and implement the
CurrentUICulture to provide the ability to change languages.

Discussion
Resource files are text-based XML files that are used to make static websites support
multiple languages. You create a main resource file that contains your default language.
Then everywhere that text is stored in your controllers, models, or views, you create a
key/value pair for the text. Figure 1-3 shows an example resource file.

1.4 Implementing Multiple Languages | 13

http://www.java2s.com/Open-Source/CSharp/Inversion-of-Control-Dependency-Injection/Spring.net/Spring/Validation/Validators/ISBNValidator.cs.htm
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.aspx

Figure 1-3. Sample resource file

When you create a resource file, in the top-right corner make sure that
the Access Modifier is set to Public instead of the default No code gener
ation. MVC won’t be able to access the file if it is not public.

To create your resource file, begin by right-clicking your MVC application and select
Add→New Folder. Call the new folder Resources. With the new folder selected, right-
click and select Add→New Item. In the search type resource and select the Resources File.

As you can see in the above example, I have created one entry per field in the Book
model class. The next step is to update the model to reference these values in the
DisplayAttribute:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;
using System.ComponentModel.DataAnnotations;
using MvcApplication4.Validations;

14 | The Recipes

namespace MvcApplication4.Models
{
 public class Book
 {
 public int ID { get; set; }

 [Required]
 [Display(Name = "TitleDisplay",
 ResourceType = typeof(Resources.Resource1))]
 public string Title { get; set; }

 [Display(Name = "IsbnDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [Required]
 [IsbnValidation]
 public string Isbn { get; set; }

 [Display(Name = "SummaryDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [Required]
 public string Summary { get; set; }

 [Display(Name = "AuthorDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [Required]
 public string Author { get; set; }

 [Display(Name = "ThumbnailDisplay",
 ResourceType = typeof(Resources.Resource1))]
 public string Thumbnail { get; set; }

 [Display(Name = "PriceDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [Range(1, 100)]
 public double Price { get; set; }

 [Display(Name = "PublishedDisplay",
 ResourceType = typeof(Resources.Resource1))]
 [DataType(DataType.Date)]
 [Required]
 public DateTime Published { get; set; }
 }

 public class BookDBContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 }
}

In the above example, the DisplayAttribute is used to retrieve the key from the resource
file by specifying the key in the name field and the resource file in the resource type. A
similar process must be completed for each view and controller.

1.4 Implementing Multiple Languages | 15

To help make debugging resource files easier and avoid processing data
within a view, I suggest setting ViewBag variables in a controller and
referencing these values in the view. It is possible to access the resource
file directly from a view; however, views are not compiled by Visual
Studio and you will receive a run-time error if you make a mistake.
Whereas if you place the resource access in the controller, Visual Studio
will display an error if the specified resource key is not found.

The following example will update the Books Index view to move the static text to the
resource file. If you examine the index view, there are not a lot of items that need to be
moved to the resource file. Create the key/value pairs shown in Table 1-1.

Table 1-1. Resource file updates

Key Value

BookIndexTitle Index

CreateLink Create New

EditLink Edit

DetailsLink Details

DeleteLink Delete

Since only one resource file is being created, all keys must be unique to the entire project.
As you can see, I have made the bottom four keys quite generic, as these can be used
by all future views that contain these links.

Once the resource file updates have been completed, open the BooksController and
replace the Index() function with the following:

//
// GET: /Books/

public ViewResult Index()
{
 #region ViewBag Resources
 ViewBag.Title =
 Resources.Resource1.BookIndexTitle;
 ViewBag.CreateLink =
 Resources.Resource1.CreateLink;
 ViewBag.TitleDisplay =
 Resources.Resource1.TitleDisplay;
 ViewBag.IsbnDisplay =
 Resources.Resource1.IsbnDisplay;
 ViewBag.SummaryDisplay =
 Resources.Resource1.SummaryDisplay;
 ViewBag.AuthorDisplay =
 Resources.Resource1.AuthorDisplay;
 ViewBag.ThumbnailDisplay =
 Resources.Resource1.ThumbnailDisplay;
 ViewBag.PriceDisplay =

16 | The Recipes

 Resources.Resource1.PriceDisplay;
 ViewBag.PublishedDisplay =
 Resources.Resource1.PublishedDisplay;
 ViewBag.EditLink =
 Resources.Resource1.EditLink;
 ViewBag.DetailsLink =
 Resources.Resource1.DetailsLink;
 ViewBag.DeleteLink =
 Resources.Resource1.DeleteLink;
 #endregion

 return View(db.Books.ToList());
}

In the above code example, a #region tag named ViewBag Resources has
been added around all of the variables. In future examples, this region
will be hidden to help provide focus on any new code being added to
the BooksController.

Finally the Books Index view must be updated to reference these ViewBag properties
instead of the static text that was previously there:

@model IEnumerable<MvcApplication6.Models.Book>

<h2>@ViewBag.Title</h2>

<p>
 @Html.ActionLink((string)ViewBag.CreateLink, "Create")
</p>
<table>
 <tr>
 <th>
 @ViewBag.TitleDisplay
 </th>
 <th>
 @ViewBag.IsbnDisplay
 </th>
 <th>
 @ViewBag.SummaryDisplay
 </th>
 <th>
 @ViewBag.AuthorDisplay
 </th>
 <th>
 @ViewBag.ThumbnailDisplay
 </th>

 <th>
 @ViewBag.PriceDisplay
 </th>
 <th>
 @ViewBag.PublishedDisplay

1.4 Implementing Multiple Languages | 17

 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink((string)ViewBag.EditLink,
 "Edit", new { id=item.ID }) |
 @Html.ActionLink((string)ViewBag.DetailsLink,
 "Details", new { id = item.ID }) |
 @Html.ActionLink((string)ViewBag.DeleteLink,
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

This same logic should be completed for the remaining views and controller actions as
well. Once all views and actions have been updated, the resource file must be duplicated
into another language.

To avoid extra typing, I would suggest waiting to do this process until all of the text
has been added to your resource file. With the main resource file selected, right-click
it and select Copy. Then select the Resources folder, right-click, and choose Paste. This
file then must be renamed as Resources1.fr.resx. Replace Resources1 with the name
of your main resource file and rename fr with the language you wish to set up. This
file can be then sent to a translator and updated by the translator to replace the English
text with the appropriate wording in the other language.

18 | The Recipes

To perform the language change, the Global.asax.cs file must be updated to change
the CurrentUICulture for each request that occurs. This can be done by adding the
following code to the Application_AcquireRequestState() function:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 ...

 protected void Application_AcquireRequestState(
 object sender, EventArgs e)
 {
 if (HttpContext.Current.Session != null)
 {
 CultureInfo ci =
 (CultureInfo)this.Session["CurrentLanguage"];
 if (ci == null)
 {
 ci = new CultureInfo("en");
 this.Session["CurrentLanguage"] = ci;
 }

 Thread.CurrentThread.CurrentUICulture = ci;
 Thread.CurrentThread.CurrentCulture =
 CultureInfo.CreateSpecificCulture(ci.Name);
 }
 }
 }
}

In the above code example, the CurrentUICulture is set based on the CurrentLanguage
session variable. If a valid CultureInfo is not found, it will be defaulted to English. By
default this session variable will not exist. A new action must be created in the Home
Controller to allow the user to switch languages:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Globalization;

1.4 Implementing Multiple Languages | 19

namespace MvcApplication4.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Message = "Welcome to ASP.NET MVC!";

 return View();
 }

 public ActionResult ChangeLanguage(string language)
 {
 Session["CurrentLanguage"] =
 new CultureInfo(language);
 return Redirect("Index");
 }

 public ActionResult About()
 {
 return View();
 }
 }
}

The new action ChangeLanguage accepts one parameter, the new language name. This
is stored in the session variable that is referenced in the Global.asax.cs file. Finally,
links must be created to switch languages. This should be available from every page,
so the Shared _Layout.cshtml view must be edited to add the following links:

[@Html.ActionLink("English", "ChangeLanguage", "Home",
 new { language = "en" }, null)]
[@Html.ActionLink("Français", "ChangeLanguage", "Home",
 new { language = "fr" }, null)]

I’ve placed these beside the Log On link. As your website grows, it is now quite easy
to add additional languages by creating a new resource file and adding a new link
allowing the user to select the new language.

In the original problem I discussed the English dialect having multiple versions for
Canada, USA, UK, etc. If you wish to separate a language by country, you can add a
hyphen (-) and the country code after the language code. For example, en-GB would
be used for English in the UK. You would also need to update your links to include this
in the language name so that CurrentUICulture will be updated properly.

See Also
CurrentUICulture

20 | The Recipes

http://msdn.microsoft.com/en-us/library/system.threading.thread.currentuiculture.aspx

1.5 Sending a Welcome Email
Problem
Many sites require people to register to access content or post a comment. With so
many websites, it’s quite difficult for people to remember each site they have registered
for. By updating the registration process, an email can be sent that reminds the user
where they just signed up, so they are able to return again later.

Solution
Implement the SmtpClient and MailMessage classes to send email to a user after
registering.

Discussion
To send an email you need to configure an SMTP server, port, username, and password.
To allow for easy configuration, I would suggest placing these in the appSettings of
your Web.config file:

 <appSettings>
 <add key="webpages:Version" value="1.0.0.0" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
 <add key="smtpServer" value="localhost" />
 <add key="smtpPort" value="25" />
 <add key="smtpUser" value="" />
 <add key="smtpPass" value="" />
 <add key="adminEmail" value="no-reply@no-reply.com" />
 </appSettings>

These values should be updated as necessary to reflect your SMTP server, port, user-
name, and password.

If this is for a website that will require a development server as well as
a live or staging environment, placing configuration settings in your
Web.config provides the ability to use Visual Studio’s XML transforma-
tions to easily update for the different environments.

To help organize the project a new folder and class will be created to contain the func-
tions necessary to send emails. Right-click on the project and select Add→New Folder
and name it Utils. Now right-click on the newly created Utils folder, select
Add→Class, and name it MailClient.cs.

The MailClient class and its functions will be defined as static to provide easy access
to the class and its functions. When it is integrated into future functions it won’t require
instantiating new objects. Below is a complete listing of the MailClient class:

1.5 Sending a Welcome Email | 21

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Net.Mail;
using System.Net;
using System.Configuration;

namespace MvcApplication4.Utils
{
 public static class MailClient
 {
 private static readonly SmtpClient Client;

 static MailClient()
 {
 Client = new SmtpClient
 {
 Host =
 ConfigurationManager.AppSettings["SmtpServer"],
 Port =
 Convert.ToInt32(
 ConfigurationManager.AppSettings["SmtpPort"]),
 DeliveryMethod = SmtpDeliveryMethod.Network
 };
 Client.UseDefaultCredentials = false;
 Client.Credentials = new NetworkCredential(
 ConfigurationManager.AppSettings["SmtpUser"],
 ConfigurationManager.AppSettings["SmtpPass"]);
 }

 private static bool SendMessage(string from, string to,
 string subject, string body)
 {
 MailMessage mm = null;
 bool isSent = false;
 try
 {
 // Create our message
 mm = new MailMessage(from, to, subject, body);
 mm.DeliveryNotificationOptions =
 DeliveryNotificationOptions.OnFailure;

 // Send it
 Client.Send(mm);
 isSent = true;
 }
 // Catch any errors, these should be logged and
 // dealt with later
 catch (Exception ex)
 {
 // If you wish to log email errors,
 // add it here...
 var exMsg = ex.Message;
 }

22 | The Recipes

 finally
 {
 mm.Dispose();
 }

 return isSent;
 }

 public static bool SendWelcome(string email)
 {
 string body = "Put welcome email content here...";

 return SendMessage(
 ConfigurationManager.AppSettings["adminEmail"],
 email, "Welcome message", body);
 }
 }
}

The class begins by instantiating a new SmtpClient variable with the settings defined
from the Web.config. Next a SendMessage function is created. This function is private
and should not be called directly from outside of this class. This function is what per-
forms the actual sending. It creates a new MailMessage object and sends it through the
SmtpClient object created earlier. Finally, a SendWelcome function is created that accepts
the users email address. It generates a generic message that should be updated to send
your welcome email and it is sent by calling the SendMessage function.

To actually send the email after the user registers, the Register function in the Account
Controller must be updated to call the SendWelcome function after the user is success-
fully created:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using System.Web.Security;
using MvcApplication4.Models;
using MvcApplication4.Utils;

namespace MvcApplication4.Controllers
{
 public class AccountController : Controller
 {
 ...

 //
 // POST: /Account/Register

 [HttpPost]
 public ActionResult Register(RegisterModel model)
 {

1.5 Sending a Welcome Email | 23

 if (ModelState.IsValid)
 {
 // Attempt to register the user
 MembershipCreateStatus createStatus;
 Membership.CreateUser(model.UserName,
 model.Password, model.Email, null, null,
 true, null, out createStatus);

 if (createStatus ==
 MembershipCreateStatus.Success)
 {
 // Send welcome email
 MailClient.SendWelcome(model.Email);
 FormsAuthentication.SetAuthCookie(
 model.UserName,
 false /* createPersistentCookie */);
 return RedirectToAction("Index", "Home");
 }
 else
 {
 ModelState.AddModelError("",
 ErrorCodeToString(createStatus));
 }
 }

 // If we got this far, something failed,
 // redisplay form
 return View(model);
 }
 }
}

The preceding code contains a basic example to extend your registration process to
send a user a welcome email. In today’s society, with the number of automated form
processing applications that exist, it might be a good idea to further this example and
change it from a welcome email to a “verify your email address” message. This could
be done by updating the email to click a link in the welcome email that validates the
account before the user can log in.

See Also
SmtpClient and MailMessage

1.6 Retrieving a Forgotten Password
Problem
You or one of your website users have registered on your site and now they cannot
remember their password and need a way to retrieve it.

24 | The Recipes

http://msdn.microsoft.com/en-us/library/system.net.mail.smtpclient.aspx
http://msdn.microsoft.com/en-us/library/system.net.mail.mailmessage.aspx

Solution
To allow users to retrieve their password, a new action and view must be added to the
AccountController. The function will use the Membership class to search for a matching
user and send them an email containing their password.

Discussion
By default, MVC Internet Applications perform a one-way hash of the passwords mak-
ing them impossible to retrieve. In the example below, the default encryption method
will be changed to a two-way hash. It’s not quite as secure, but it avoids forcing the
user to reset their password if they forgot it.

To start, the membership settings in Web.config file needs to be adjusted:

<?xml version="1.0"?>
<configuration>
 ...

 <system.web>
 ...

 <membership>
 <providers>
 <clear />
 <add name="AspNetSqlMembershipProvider" type=
 "System.Web.Security.SqlMembershipProvider"
 connectionStringName="ApplicationServices"
 enablePasswordRetrieval="true" enablePasswordReset=
 "false" requiresQuestionAndAnswer="false"
 requiresUniqueEmail="false" passwordFormat=
 "Encrypted" maxInvalidPasswordAttempts="5"
 minRequiredPasswordLength="6"
 minRequiredNonalphanumericCharacters="0"
 passwordAttemptWindow="10" applicationName="/" />
 </providers>
 </membership>

 <machineKey
 validationKey=
"2CF9FF841A23366CFA5D655790D9308656B1F7532C0B95B5C067F80C45E59875
E2F3D68DAC63B5024C31D974D4BE151341FB8A31FC4BC3705DF5398B553FC3C3"
 decryptionKey="8E71407B62F47CCA3AAA6546B3880E1A0EF9833700
E0A0C511710F537E64B8B6" validation="SHA1" decryption="AES" />

 ...
 </system.web>

 ...
</configuration>

1.6 Retrieving a Forgotten Password | 25

Four key items in the above example were changed/added:

1. enablePasswordRetrieval was changed from false to true

2. enablePasswordReset was changed from true to false

3. passwordFormat="Encrypted" was added

4. machineKey was generated for the encryption

With the configuration changes complete, a new model must be created for the Forgot
Password view. This class should be placed in the AccountModels.cs class:

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Globalization;
using System.Web.Mvc;
using System.Web.Security;

namespace MvcApplication4.Models
{

 public class ChangePasswordModel
 {
 ...
 }

 public class LogOnModel
 {
 ...
 }

 public class RegisterModel
 {
 ...
 }

 public class ForgotPasswordModel
 {
 [Required]
 [DataType(DataType.EmailAddress)]
 [Display(Name = "Email address")]
 public string Email { get; set; }
 }
}

Before the new view can be added, the application must be built. Click Build→Build
Solution or press F6. Once the application has finished building, the new view can be
added. Expand the Views folder and right-click on the Account folder and select
Add→View (Figure 1-4). This view will be called ForgotPassword. Because this view will
be strongly-typed to the ForgotPasswordModel previously created, be sure that it is se-
lected from the Model class drop-down menu.

26 | The Recipes

Figure 1-4. Forgot Password view

After the view is created, a form is added to it. The form is quite basic—it accepts the
user’s email address:

@model MvcApplication4.Models.ForgotPasswordModel

@{
 ViewBag.Title = "ForgotPassword";
}

<h2>ForgotPassword</h2>

1.6 Retrieving a Forgotten Password | 27

<p>
 Use the form below to retrieve your password.
</p>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="@Url.Content(
 "~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>

@using (Html.BeginForm()) {
 @Html.ValidationSummary(true, "Password retrieval was
unsuccessful. Please correct the errors and try again.")
 <div>
 <fieldset>
 <legend>Account Information</legend>

 <div class="editor-label">
 @Html.LabelFor(m => m.Email)
 </div>
 <div class="editor-field">
 @Html.TextBoxFor(m => m.Email)
 @Html.ValidationMessageFor(m => m.Email)
 </div>

 <p>
 <input type="submit" value="Retrieve Password" />
 </p>
 </fieldset>
 </div>
}

Next the previously created MailClient class is updated to include a new function that
will send the user their forgotten password:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Net.Mail;
using System.Net;
using System.Configuration;

namespace MvcApplication4.Utils
{
 public class MailClient
 {
 private static readonly SmtpClient Client;

 static MailClient()
 {
 ...
 }

 private static bool SendMessage(string from, string to,
 string subject, string body)

28 | The Recipes

 {
 ...
 }

 public static bool SendWelcome(string email)
 {
 ...
 }

 public static bool SendLostPassword(string email,
 string password)
 {
 string body = "Your password is: " + password;

 return SendMessage("no-reply@no-reply.com", email,
 "Lost Password", body);
 }
 }
}

This function is very similar to the previous one, with the exception that a second
parameter is added—the user’s password. The password is added to the body of the
email being sent to the user.

Finally, inside of the AccountController, two ForgotPassword functions are created. The
first function will simply load the previously created view. The second function will
accept the ForgotPasswordModel form that is posted. Using the email address collected
in the form, it will search the Membership database for users matching that email address.
For each user that is found, one email will be sent to them with their password:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using System.Web.Security;
using MvcApplication4.Models;
using MvcApplication4.Utils;

namespace MvcApplication4.Controllers
{
 public class AccountController : Controller
 {
 ...

 //
 // Get: /Account/ForgotPassword

 public ActionResult ForgotPassword()
 {
 return View();
 }

1.6 Retrieving a Forgotten Password | 29

 //
 // Post: /Account/ForgotPassword
 [HttpPost]
 public ActionResult ForgotPassword(
 ForgotPasswordModel model)
 {
 if (ModelState.IsValid)
 {
 MembershipUserCollection users =
 Membership.FindUsersByEmail(model.Email);
 if (users.Count > 0)
 {
 foreach (MembershipUser user in users)
 {
 MailClient.SendLostPassword(model.Email,
 user.GetPassword());
 }

 return RedirectToAction("LogOn");
 }
 }

 // If we got this far, something failed,
 // redisplay form
 return View(model);
 }

 ...
 }
}

In the last two recipes, basic emails have been sent to the users. These examples can
easily be enhanced to send more complex emails or even emails containing HTML
content. To send HTML emails, there is a boolean variable IsBodyHtml on the Mail
Message class that can be set to true.

See Also
Membership.Providers Property

1.7 Sorting a List of Results
Problem
You have a large list (say, a list of books), and you cannot easily find the one you are
looking for. Sorting them by one of the columns in the list should help you find what
you are looking for faster.

30 | The Recipes

http://msdn.microsoft.com/en-us/library/system.web.security.membership.providers.aspx

Solution
Update the list of books to make the column headings a link. Once the link is clicked
on, implement the Dynamic Linq Library to sort the results based on the column
selected (ascending or descending—clicking the link again will reverse the order).

Discussion
I was a bit surprised by the effort required to add sorting to the automatically generated
views, compared to other frameworks I’ve used. Hopefully in future versions of MVC,
this will become a part of the scaffolding process. The other part that I thought required
quite a bit of effort was the example provided on the homepage of ASP.NET MVC
where you need to use a switch statement with one case per sorting option. In the case
of the book example, there are only five columns to be sorted, so it wouldn’t be too
bad—but as this functionality gets replicated to other lists, perhaps authors, etc., the
work will continue to grow. In the example below, the work is simplified by taking
advantage of the Dynamic Linq Library.

By default, the Linq library being used allows for strongly-typed expressions to build
results from a database. This provides some great advantages, such as full IntelliSense
support and compiler-time error messages if a mistake is made. However, as I men-
tioned above, it also becomes a lot of work to build useful functionality.

To add sorting both the BooksController and the Books/Index view require changes.
Below is the updated index view:

@model IEnumerable<MvcApplication4.Models.Book>

<h2>@ViewBag.Title</h2>

<p>
 @Html.ActionLink((string)ViewBag.CreateLink, "Create")
</p>
<table>
 <tr>
 <th>
 @Html.ActionLink((string)ViewBag.TitleDisplay,
 "Index", new { sortOrder = ViewBag.TitleSortParam })
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.IsbnDisplay,
 "Index", new { sortOrder = ViewBag.IsbnSortParam })
 </th>
 <th>
 @ViewBag.SummaryDisplay
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.AuthorDisplay,
 "Index", new { sortOrder = ViewBag.AuthorSortParam })
 </th>

1.7 Sorting a List of Results | 31

 <th>
 @ViewBag.ThumbnailDisplay
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.PriceDisplay,
 "Index", new { sortOrder = ViewBag.PriceSortParam })
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.PublishedDisplay,
 "Index", new { sortOrder =
 ViewBag.PublishedSortParam })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink((string)ViewBag.EditLink,
 "Edit", new { id=item.ID }) |
 @Html.ActionLink((string)ViewBag.DetailsLink,
 "Details", new { id = item.ID }) |
 @Html.ActionLink((string)ViewBag.DeleteLink,
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

In the above example, the previously created <th> tags have been updated to no longer
be static text, instead they have been converted to HTML links using the ActionLink
function from the HTML helper.

32 | The Recipes

Next the BookController’s Index() function needs to be updated. This function will
accept a new parameter called sortOrder. This variable will then be used to perform a
Dynamic Linq query to sort the results by this column. A few new ViewBag variables are
also created that contains the sort condition used by each column.

Microsoft has provided a free DynamicQuery class that extends the Linq namespace,
allowing you to build dynamic queries by building expressions. To download the li-
brary for C#, visit http://msdn2.microsoft.com/en-us/vcsharp/bb894665.aspx. Once
downloaded, you will need to extract the files to a location on your hard drive. The
dynamic LINQ library class can be found here: ~\CSharpSamples\LinqSamples\Dynamic
Query\DynamicQuery\Dynamic.cs. This file must be added to the project. For organiza-
tion purposes I would suggest adding it to the previously created Utils directory. Right-
click on the Utils directory and select Add→Existing Item and navigate to the dynamic
class (or you can drag the file from the folder onto the Utils folder in your MVC ap-
plication).

Once added the BooksController is updated as follows:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Resources;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/

 public ViewResult Index(string sortOrder)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 // Define the sort orders - if the same link is
 // clicked twice, reverse the direction from
 // ascending to descending
 ViewBag.TitleSortParam = (sortOrder == "Title")
 ? "Title desc" : "Title";
 ViewBag.IsbnSortParam = (sortOrder == "Isbn")
 ? "Isbn desc" : "Isbn";

1.7 Sorting a List of Results | 33

http://msdn2.microsoft.com/en-us/vcsharp/bb894665.aspx

 ViewBag.AuthorSortParam = (sortOrder == "Author")
 ? "Author desc" : "Author";
 ViewBag.PriceSortParam = (sortOrder == "Price")
 ? "Price desc" : "Price";
 ViewBag.PublishedSortParam =
 (String.IsNullOrEmpty(sortOrder))
 ? "Published desc" : "";

 // Default the sort order
 if (String.IsNullOrEmpty(sortOrder))
 {
 sortOrder = "Published desc";
 }
 #endregion

 var books = db.Books.OrderBy(sortOrder);

 return View(books.ToList());
 }

 ...
 }
}

The above example allows sorting based on the sortOrder variable
passed in. The code above is slightly insecure and is meant to demon-
strate the process of performing dynamic LINQ queries with minimal
effort. Because this variable can be passed in through the URL, it is
important to add some more validation around the inputted data to
ensure a user is not attempting something malicious.

See Also
System.Linq.Expressions Namespace

1.8 Paging Through a List of Results
Problem
You have a long list of results that either take too long to load, or you simply can’t find
the result you are looking for in the long list. Breaking the results up into multiple pages
will reduce the page load time and help find results faster, especially when the results
are sorted.

Solution
Implement PagedList.MVC to navigate between pages of a list of records.

34 | The Recipes

http://msdn.microsoft.com/en-us/library/system.linq.expressions.aspx

Discussion
To add paging to an application you need to install a new library called Paged
List.Mvc through the NuGet Library. This will allow a paged list of books rather than
the complete list. To install the package, select the Tools menu→Library Package Man-
ager→Add Library Package Reference. From the left, select the Online button. In the
search box, enter PagedList and click the Install button beside the PagedList.MVC pack-
age (see Figure 1-5).

Figure 1-5. PagedList.MVC library package

Once the PagedList is installed, the code to create the pagination links will be added
as a partial view. This will allow the code to be reused on future lists that require paging
of results. Because the paging process doesn’t really contain many dynamic variables,
this is a perfect opportunity to reuse the HTML on every list of results with very minimal
effort, while maintaining a consistent look.

A partial view is a great spot to place reusable HTML code that doesn’t
belong to any one view—or as in the example below—that will be used
multiple times.

1.8 Paging Through a List of Results | 35

To begin, expand the Views folder and right-click on the Shared folder and select
Add→View. In the dialog box, enter the name as _Paging and be sure to select the
checkbox for Create as partial view. When you are done, press Add. The content for
the new view is as follows:

<p>
 @if (Model.HasPreviousPage)
 {
 @Html.ActionLink("<< First", "Index", new {
 page = 1, sortOrder = ViewBag.CurrentSortOrder })
 @Html.Raw(" ");
 @Html.ActionLink("< Prev", "Index", new {
 page = Model.PageNumber - 1, sortOrder =
 ViewBag.CurrentSortOrder })
 }
 else
 {
 @:<< First
 @Html.Raw(" ");
 @:< Prev
 }

 @if (Model.HasNextPage)
 {
 @Html.ActionLink("Next >", "Index", new {
 page = Model.PageNumber + 1,
 sortOrder = ViewBag.CurrentSortOrder })
 @Html.Raw(" ");
 @Html.ActionLink("Last >>", "Index", new {
 page = Model.PageCount,
 sortOrder = ViewBag.CurrentSortOrder })
 }
 else
 {
 @:Next >
 @Html.Raw(" ")
 @:Last >>
 }
</p>

The following partial view creates up to four links: first, previous, next, and last. I say
up to four because if there are no previous pages available, the first and previous link
are disabled. Same for when there is no next page: the next and last links are disabled.
Each link passes two variables to the Index() function: a page number and the current
sort order. The current sort order is passed to ensure that when switching between
pages, the user doesn’t lose the sorting they chose.

Next, the Books/Index view needs a few changes:

@model PagedList.IPagedList<MvcApplication4.Models.Book>

<h2>@ViewBag.Title</h2>

36 | The Recipes

<p>
 @Html.ActionLink((string)ViewBag.CreateLink, "Create")
</p>

@Html.Partial("_Paging")

<table>
 <tr>
 <th>
 @Html.ActionLink((string)ViewBag.TitleDisplay,
 "Index", new { sortOrder = ViewBag.TitleSortParam })
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.IsbnDisplay,
 "Index", new { sortOrder = ViewBag.IsbnSortParam })
 </th>
 <th>
 @ViewBag.SummaryDisplay
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.AuthorDisplay,
 "Index", new { sortOrder =
 ViewBag.AuthorSortParam })
 </th>
 <th>
 @ViewBag.ThumbnailDisplay
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.PriceDisplay,
 "Index", new { sortOrder = ViewBag.PriceSortParam })
 </th>
 <th>
 @Html.ActionLink((string)ViewBag.PublishedDisplay,
 "Index", new { sortOrder =
 ViewBag.PublishedSortParam })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>

1.8 Paging Through a List of Results | 37

 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink((string)ViewBag.EditLink,
 "Edit", new { id=item.ID }) |
 @Html.ActionLink((string)ViewBag.DetailsLink,
 "Details", new { id = item.ID }) |
 @Html.ActionLink((string)ViewBag.DeleteLink,
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

@Html.Partial("_Paging")

The above example contains three subtle changes to the view. Firstly, the strongly-
typed model has been updated to be of type PagedList.IPagedList and the shared
_Paging view has been included twice: once above the table and once below the table.

You might notice that the sorting links were not updated to include the
page number like the paging links were. This is done purposely, as the
expected functionality of changing the sort order is to begin back at page
1 again.

Finally, the BooksController needs to be updated as well. The Index() function is up-
dated to accept a new parameter, page, and instead of returning the books as a list, the
books are being returned as a paged list instead. Also, inside of the sort order region,
a new ViewBag variable has been added that sets the current sort order (used in the
_Paging partial view):

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

38 | The Recipes

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/

 public ViewResult Index(string sortOrder, int page = 1)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 ...
 ViewBag.CurrentSortOrder = sortOrder;
 #endregion

 var books = db.Books.OrderBy(sortOrder);

 int maxRecords = 1;
 int currentPage = page - 1;
 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...
 }
}

If you wish to further extend the partial view to reuse in other list results, you only need
to ensure that the same ViewBag variables are set for each list. In case the list results
aren’t in the Index action like this one is, you could update the Html.ActionLink calls
to potentially use another ViewBag variable that defines the action—making it
dynamic.

1.9 Filtering a List of Results
Problem
When sorting and paging are not enough to help users find their results, filtering by
specific content is another way to help users find what they are looking for.

Solution
Add new links to allow a user to filter a list of results by predefined criteria and using
the Linq library to perform the filtering of data.

1.9 Filtering a List of Results | 39

Discussion
To add filter links, changes need to be made to both the Books/Index view and the
BooksController. The changes to the view are quite similar to the previous two recipes.
HTML links must be added that allow the user to choose how they want to filter the
content. Three new links will be added: All, New Releases, and Coming Soon. New
Releases will be defined as something published within the last 2 weeks, and Coming
Soon is defined as something not yet published.

Below is the new Books/Index view. The three new links all contain the current sort
order as a parameter (to maintain the user’s current sort option) and the last two links
contain a new variable called filter. Like the paging links, if the active filter is the link
that should be displayed, it is not set as a link and text is displayed to identify to the
user the current filter option. To ensure the filter is maintained when the user changes
the sort order, those links are also updated to pass the current filter as well:

@model PagedList.IPagedList<MvcApplication4.Models.Book>

<h2>@MvcApplication4.Resources.Resource1.BookIndexTitle</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<p>
 Show:
 @if (ViewBag.CurrentFilter != "")
 {
 @Html.ActionLink("All", "Index", new {
 sortOrder = ViewBag.CurrentSortOrder })
 }
 else
 {
 @:All
 }
 |
 @if (ViewBag.CurrentFilter != "NewReleases")
 {
 @Html.ActionLink("New Releases", "Index", new {
 filter = "NewReleases", sortOrder =
 ViewBag.CurrentSortOrder })
 }
 else
 {
 @:New Releases
 }
 |
 @if (ViewBag.CurrentFilter != "ComingSoon")
 {
 @Html.ActionLink("Coming Soon", "Index", new {
 filter = "ComingSoon", sortOrder =
 ViewBag.CurrentSortOrder })
 }

40 | The Recipes

 else
 {
 @:Coming Soon
 }
</p>
@Html.Partial("_Paging")
<table>
 <tr>
 <th>
 @Html.ActionLink("Title", "Index", new {
 sortOrder = ViewBag.TitleSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th>
 @Html.ActionLink("Isbn", "Index", new {
 sortOrder = ViewBag.IsbnSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th>
 Summary
 </th>
 <th>
 @Html.ActionLink("Author", "Index", new {
 sortOrder = ViewBag.AuthorSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th>
 Thumbnail
 </th>
 <th>
 @Html.ActionLink("Price", "Index", new {
 sortOrder = ViewBag.PriceSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th>
 @Html.ActionLink("Published", "Index", new {
 sortOrder = ViewBag.PublishedSortParam,
 filter = ViewBag.CurrentFilter })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model)
{
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>

1.9 Filtering a List of Results | 41

 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink("Edit",
 "Edit", new { id = item.ID }) |
 @Html.ActionLink("Details",
 "Details", new { id = item.ID }) |
 @Html.ActionLink("Delete",
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

@Html.Partial("_Paging")

The partial view for the paging links created in the last recipe also requires updating.
In the example below, the four paging links have been updated to pass the current filter
option along with the page and sort order values:

<p>
 @if (Model.HasPreviousPage)
 {
 @Html.ActionLink("<< First", "Index", new {
 page = 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter })
 @Html.Raw(" ");
 @Html.ActionLink("< Prev", "Index", new {
 page = Model.PageNumber - 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter })
 }
 else
 {
 @:<< First
 @Html.Raw(" ");
 @:< Prev
 }

 @if (Model.HasNextPage)
 {

42 | The Recipes

 @Html.ActionLink("Next >", "Index", new {
 page = Model.PageNumber + 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter })
 @Html.Raw(" ");
 @Html.ActionLink("Last >>", "Index", new {
 page = Model.PageCount,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter })
 }
 else
 {
 @:Next >
 @Html.Raw(" ")
 @:Last >>
 }
</p>

Next are the changes to the BooksController. The Index() function is being updated
again. It is now accepting a new variable for the filter. Based on the filter options, the
list of books will be reduced based on the user’s selection. There are two approaches
that could be used to implement the filtering:

1. Use dynamic Linq again to create a string-based where clause

2. Use standard Linq and a switch statement to create a strongly-typed where clause

Because filter links typically don’t contain too many entries compared to sortable
headers, this recipe will use the second approach. By using the second approach, the
warning in the sorting recipe doesn’t need to be considered because it is strongly-typed
and not dynamic, so extra checking of the input is not required to prevent dangerous
SQL injection.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/

1.9 Filtering a List of Results | 43

 public ViewResult Index(string sortOrder,
 string filter, int page = 1)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 ...
 #endregion

 var books = from b in db.Books select b;

 #region Filter Switch
 switch (filter)
 {
 case "NewReleases":
 var startDate = DateTime.Today.AddDays(-14);
 books = books.Where(b => b.Published
 <= DateTime.Today.Date
 && b.Published >= startDate
);
 break;

 case "ComingSoon":
 books = books.Where(b => b.Published >
 DateTime.Today.Date);
 break;

 default:
 // No filter needed
 break;
 }

 ViewBag.CurrentFilter =
 String.IsNullOrEmpty(filter) ? "" : filter;
 #endregion

 books = books.OrderBy(sortOrder);

 int maxRecords = 1;
 int currentPage = page - 1;
 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...
 }
}

In the above example, if the user chose to filter by New Releases, a search is performed
to return any books that were published today or within the past 14 days. Or if the user
chose Coming Soon, a search is performed to return any books that will be published
after today. Otherwise, no filtering is required and all books are returned.

44 | The Recipes

1.10 Searching a List of Results by Keyword
Problem
When sorting, paging, and filtering are not enough to help you find what you are look-
ing for, the next best alternative is to let the user type what they want to find.

Solution
Create a new form and text input with the Html Helper and update the previous filtered
results by the user-entered keyword with the Linq library.

Discussion
Much like the previous recipes, adding a keyword search requires changes to both the
Books/Index view and BooksController. The view will be changed by adding a new form
and textbox input for the user to enter their keyword of choice. Also, to ensure that the
user’s keyword is maintained when changing the sort order, filter, or paging through
links, the code will be updated to maintain the user’s keyword. The example below
contains the updated Books/Index view:

@model PagedList.IPagedList<MvcApplication4.Models.Book>

<h2>@MvcApplication4.Resources.Resource1.BookIndexTitle</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<p>
 Show:
 @if (ViewBag.CurrentFilter != "")
 {
 @Html.ActionLink("All", "Index", new {
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:All
 }
 |
 @if (ViewBag.CurrentFilter != "NewReleases")
 {
 @Html.ActionLink("New Releases", "Index", new {
 filter = "NewReleases",
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:New Releases
 }

1.10 Searching a List of Results by Keyword | 45

 |
 @if (ViewBag.CurrentFilter != "ComingSoon")
 {
 @Html.ActionLink("Coming Soon", "Index", new {
 filter = "ComingSoon",
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:Coming Soon
 }
</p>
@using (Html.BeginForm())
{
 @:Search: @Html.TextBox("Keyword")
 <input type="submit" value="Search" />
}
@Html.Partial("_Paging")
<table>
 <tr>
 <th>
 @Html.ActionLink("Title", "Index", new {
 sortOrder = ViewBag.TitleSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th>
 @Html.ActionLink("Isbn", "Index", new {
 sortOrder = ViewBag.IsbnSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th>
 Summary
 </th>
 <th>
 @Html.ActionLink("Author", "Index", new {
 sortOrder = ViewBag.AuthorSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th>
 Thumbnail
 </th>
 <th>
 @Html.ActionLink("Price", "Index", new {
 sortOrder = ViewBag.PriceSortParam,

 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th>
 @Html.ActionLink("Published", "Index", new {
 sortOrder = ViewBag.PublishedSortParam,

46 | The Recipes

 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model)
{
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink("Edit",
 "Edit", new { id = item.ID }) |
 @Html.ActionLink("Details",
 "Details", new { id = item.ID }) |
 @Html.ActionLink("Delete",
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

@Html.Partial("_Paging")

The shared paging view also needs to be updated to maintain the current keyword as
well:

<p>
 @if (Model.HasPreviousPage)
 {
 @Html.ActionLink("<< First", "Index", new {
 page = 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })

1.10 Searching a List of Results by Keyword | 47

 @Html.Raw(" ");
 @Html.ActionLink("< Prev", "Index", new {
 page = Model.PageNumber - 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:<< First
 @Html.Raw(" ");
 @:< Prev
 }

 @if (Model.HasNextPage)
 {
 @Html.ActionLink("Next >", "Index", new {
 page = Model.PageNumber + 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 @Html.Raw(" ");
 @Html.ActionLink("Last >>", "Index", new {
 page = Model.PageCount,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword })
 }
 else
 {
 @:Next >
 @Html.Raw(" ")
 @:Last >>
 }
</p>

Finally the BooksController needs to be updated. In the example below, the Index
function is updated to accept a new keyword parameter and if the user has entered a
keyword the books title and author are searched by that keyword. If you wish to add
other fields as well, simply update the example below to include the additional fields:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

48 | The Recipes

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/

 public ViewResult Index(string sortOrder, string filter,
 string Keyword, int page = 1)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 ...
 #endregion

 var books = from b in db.Books select b;

 #region Keyword Search
 if (!String.IsNullOrEmpty(Keyword))
 {
 books = books.Where(b =>
 b.Title.ToUpper().Contains(Keyword.ToUpper())
 || b.Author.ToUpper().Contains(
 Keyword.ToUpper()));
 }
 ViewBag.CurrentKeyword =
 String.IsNullOrEmpty(Keyword) ? "" : Keyword;
 #endregion

 #region Filter Switch
 ...
 #endregion

 int maxRecords = 1;
 int currentPage = page - 1;
 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...
 }
}

1.10 Searching a List of Results by Keyword | 49

1.11 Uploading a File Through a Form
Problem
You want to allow users to upload and save a file to your website.

Solution
Implement a file upload and save the file to disk using HttpPostedFileBase.

Discussion
In the following example, the previously created views to add and edit books will be
updated to allow a user to select a file to upload for the thumbnail field. To begin the
Books/Create view must be updated to change the enctype of the form and replace the
scaffolded textbox for the thumbnail field. Below is the updated create view:

@model MvcApplication4.Models.Book

@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="
 @Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>

@using (Html.BeginForm("Create", "Books", FormMethod.Post,
 new { enctype = "multipart/form-data" }))
{
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Book</legend>

 <div class="editor-label">
 @Html.LabelFor(model => model.Title)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Isbn)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Isbn)
 @Html.ValidationMessageFor(model => model.Isbn)
 </div>

50 | The Recipes

 <div class="editor-label">
 @Html.LabelFor(model => model.Summary)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Summary)
 @Html.ValidationMessageFor(model => model.Summary)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Author)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Author)
 @Html.ValidationMessageFor(model => model.Author)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Thumbnail)
 </div>
 <div class="editor-field">
 <input type="file" name="file" />
 @Html.ValidationMessageFor(model => model.Thumbnail)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Price)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Published)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Published)
 @Html.ValidationMessageFor(model => model.Published)
 </div>

 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}

<div>
 @Html.ActionLink("Back to List", "Index")
</div>

The books edit view must also be updated in the same way, with the exception that a
hidden field has been added (passing in the old thumbnail). This will be used in the
BooksController to delete the old file before uploading the new file:

1.11 Uploading a File Through a Form | 51

@model MvcApplication4.Models.Book

@{
 ViewBag.Title = "Edit";
}

<h2>Edit</h2>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="
 @Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>

@using (Html.BeginForm("Edit", "Books", FormMethod.Post,
 new { enctype = "multipart/form-data" }))
{
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>Book</legend>

 @Html.HiddenFor(model => model.ID)

 <div class="editor-label">
 @Html.LabelFor(model => model.Title)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Title)
 @Html.ValidationMessageFor(model => model.Title)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Isbn)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Isbn)
 @Html.ValidationMessageFor(model => model.Isbn)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Summary)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Summary)
 @Html.ValidationMessageFor(model => model.Summary)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Author)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Author)
 @Html.ValidationMessageFor(model => model.Author)
 </div>

52 | The Recipes

 <div class="editor-label">
 @Html.LabelFor(model => model.Thumbnail)
 </div>
 <div class="editor-field">
 <input type="file" name="file" />
 @Html.HiddenFor(model => model.Thumbnail)
 @Html.ValidationMessageFor(model => model.Thumbnail)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Price)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Price)
 @Html.ValidationMessageFor(model => model.Price)
 </div>

 <div class="editor-label">
 @Html.LabelFor(model => model.Published)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Published)
 @Html.ValidationMessageFor(model => model.Published)
 </div>

 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>
}

<div>
 @Html.ActionLink("Back to List", "Index")
</div>

Since both the Create and Edit functions in the BooksController will save the uploaded
file, a new class will be created to avoid duplicating code. This class will be created in
the Utils folder. With the Utils folder selected, right-click and select Add→Class. This
class will be called FileUpload.cs.

This new class will be responsible for two key functions: saving the file and deleting
the file. In the following example, the FileUpload class receives an HttpPostedFile
Base variable and saves it to a specific spot on the web server. Another function does
the opposite, it receives the name of the file and deletes it from the web server:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.IO;

namespace MvcApplication4.Utils
{
 public static class FileUpload

1.11 Uploading a File Through a Form | 53

 {
 public static char DirSeparator =
 System.IO.Path.DirectorySeparatorChar;
 public static string FilesPath = "Content" +
 DirSeparator + "Uploads" + DirSeparator;

 public static string UploadFile(HttpPostedFileBase file)
 {
 // Check if we have a file
 if (null == file) return "";
 // Make sure the file has content
 if (!(file.ContentLength > 0)) return "";

 string fileName = file.FileName;
 string fileExt = Path.GetExtension(file.FileName);

 // Make sure we were able to determine a proper
 // extension
 if (null == fileExt) return "";

 // Check if the directory we are saving to exists
 if (!Directory.Exists(FilesPath))
 {
 // If it doesn't exist, create the directory
 Directory.CreateDirectory(FilesPath);
 }

 // Set our full path for saving
 string path = FilesPath + DirSeparator + fileName;

 // Save our file
 file.SaveAs(Path.GetFullPath(path));

 // Return the filename
 return fileName;
 }

 public static void DeleteFile(string fileName)
 {
 // Don't do anything if there is no name
 if (fileName.Length == 0) return;

 // Set our full path for deleting
 string path = FilesPath + DirSeparator + fileName;

 // Check if our file exists
 if (File.Exists(Path.GetFullPath(path)))
 {
 // Delete our file
 File.Delete(Path.GetFullPath(path));
 }
 }

 }
}

54 | The Recipes

The class and functions inside are defined as static to avoid the need to instantiate the
class in the BooksController. At the top of the class, a constant is created that defines
where files will be saved—this should be updated as needed to save in a different lo-
cation on your website. In the UploadFile function, if the directory of where files will
be uploaded doesn’t already exist, it will be created using the CreateDirectory function
from the System.IO.Directory class. A similar check is done in the delete function to
make sure the file exists before deleting it with the File.Delete function. If this check
is not performed, an error would be returned if the function attempted to delete a file
that does not exist.

Finally the BooksController needs to be updated. In the following example, three im-
portant changes are done:

1. The Create function is updated to call the UploadFile function.

2. The Edit function is updated to first call the DeleteFile function, then call the
UploadFile function.

3. The DeleteConfirmed function is updated to call the DeleteFile function before
deleting the book from the database.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 ...

 //
 // GET: /Books/Create

 public ActionResult Create()
 {
 return View();
 }

 //
 // POST: /Books/Create

 [HttpPost]

1.11 Uploading a File Through a Form | 55

 public ActionResult Create(Book book,
 HttpPostedFileBase file)
 {
 if (ModelState.IsValid)
 {
 // Upload our file
 book.Thumbnail = FileUpload.UploadFile(file);

 db.Books.Add(book);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 return View(book);
 }

 //
 // GET: /Books/Edit/5

 public ActionResult Edit(int id)
 {
 Book book = db.Books.Find(id);
 return View(book);
 }

 //
 // POST: /Books/Edit/5

 [HttpPost]
 public ActionResult Edit(Book book,
 HttpPostedFileBase file)
 {
 if (ModelState.IsValid)
 {
 // Delete old file
 FileUpload.DeleteFile(book.Thumbnail);

 // Upload our file
 book.Thumbnail = FileUpload.UploadFile(file);

 db.Entry(book).State = EntityState.Modified;
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 return View(book);
 }

 //
 // GET: /Books/Delete/5

 public ActionResult Delete(int id)
 {
 Book book = db.Books.Find(id);
 return View(book);
 }

56 | The Recipes

 //
 // POST: /Books/Delete/5

 [HttpPost, ActionName("Delete")]
 public ActionResult DeleteConfirmed(int id)
 {
 Book book = db.Books.Find(id);

 // Delete old file
 FileUpload.DeleteFile(book.Thumbnail);

 db.Books.Remove(book);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 ...
 }
}

See Also
HttpPostedFileBase

1.12 Resizing an Image to Create a Thumbnail
Problem
You allow a user to upload an image, but typically this will be from a camera with
pictures that are quite large, so you want to display a sample or thumbnail of the image
on your website, allowing the user to preview the image before seeing the full image.

Solution
Update the existing file upload to resize an image with the following classes: File
Stream, Image, Bitmap, and Graphics class to a specific width and height.

Discussion
In the following example, the previously created FileUpload class will be updated and
reorganized. A new function called ResizeImage is created to perform the resizing. The
resized image will be saved in a subfolder of where the previous files were saved, called
Thumbnails. The DeleteFile function is also updated to remove both the thumbnail and
original image, and a new function is created and called twice from the delete function
to avoid duplicating code. The partial file upload class is displayed below, identifying
the changes:

1.12 Resizing an Image to Create a Thumbnail | 57

http://msdn.microsoft.com/en-us/library/system.web.httppostedfilebase.aspx

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.IO;
using System.Drawing;
using System.Drawing.Drawing2D;

namespace MvcApplication4.Utils
{
 public static class FileUpload
 {
 public static char DirSeparator =
 System.IO.Path.DirectorySeparatorChar;
 public static string FilesPath = "Content" +
 DirSeparator + "Uploads" + DirSeparator;

 public static string UploadFile(HttpPostedFileBase file)
 {
 ...

 // Save our thumbnail as well
 ResizeImage(file, 150, 100);

 ...
 }

 public static void DeleteFile(string fileName)
 {
 // Don't do anything if there is no name
 if (fileName.Length == 0) return;

 // Set our full path for deleting
 string path = FilesPath + DirSeparator + fileName;
 string thumbPath = FilesPath + DirSeparator +
 "Thumbnails" + DirSeparator + fileName;

 RemoveFile(path);
 RemoveFile(thumbPath);
 }

 private static void RemoveFile(string path)
 {
 // Check if our file exists
 if (File.Exists(Path.GetFullPath(path)))
 {
 // Delete our file
 File.Delete(Path.GetFullPath(path));
 }
 }

 public static void ResizeImage(HttpPostedFileBase file,
 int width, int height)
 {

58 | The Recipes

 string thumbnailDirectory =
 String.Format(@"{0}{1}{2}", FilesPath,
 DirSeparator, "Thumbnails");

 // Check if the directory we are saving to exists
 if (!Directory.Exists(thumbnailDirectory))
 {
 // If it doesn't exist, create the directory
 Directory.CreateDirectory(thumbnailDirectory);
 }

 // Final path we will save our thumbnail
 string imagePath =
 String.Format(@"{0}{1}{2}", thumbnailDirectory,
 DirSeparator, file.FileName);
 // Create a stream to save the file to when we're
 // done resizing
 FileStream stream = new FileStream(Path.GetFullPath(
 imagePath), FileMode.OpenOrCreate);

 // Convert our uploaded file to an image
 Image OrigImage = Image.FromStream(file.InputStream);
 // Create a new bitmap with the size of our
 // thumbnail
 Bitmap TempBitmap = new Bitmap(width, height);

 // Create a new image that contains quality
 // information
 Graphics NewImage = Graphics.FromImage(TempBitmap);
 NewImage.CompositingQuality =
 CompositingQuality.HighQuality;
 NewImage.SmoothingMode =
 SmoothingMode.HighQuality;
 NewImage.InterpolationMode =
 InterpolationMode.HighQualityBicubic;

 // Create a rectangle and draw the image
 Rectangle imageRectangle = new Rectangle(0, 0,
 width, height);
 NewImage.DrawImage(OrigImage, imageRectangle);

 // Save the final file
 TempBitmap.Save(stream, OrigImage.RawFormat);

 // Clean up the resources
 NewImage.Dispose();
 TempBitmap.Dispose();
 OrigImage.Dispose();
 stream.Close();
 stream.Dispose();
 }
 }
}

1.12 Resizing an Image to Create a Thumbnail | 59

A lot is happening in the above example, specifically in the ResizeImage function. First-
ly, if the Thumbnails directory doesn’t already exist, it will be created. Next, a new
FileStream is created for editing with the full path to where the final thumbnail will be
saved.

Then the original uploaded image is converted to an object of the Image class using the
InputStream of the uploaded file. A new Bitmap image is created based on the width and
height of the thumbnail that will be created. This Bitmap image is then used to create a
new Graphics object. The Graphics object, NewImage, is then used to set and define the
quality, smooth, interpolation mode. Without these settings, the thumbnail image
would not look good and be extremely pixelated and resized awkwardly.

Once this is all set, a new Rectangle is created and the original image is drawn to the
Graphics object. This is what performs the actually resizing. Finally the Bitmap is saved
and all of the objects created are disposed of, to free up resources.

In the above example, a few important things (that should be updated
before using in production) have been left out to focus on the resizing
of the image. They are: validating that the uploaded file is an image; and
checking the orientation of the original image to create a thumbnail that
is not a fixed size of 150 pixels by 150 pixels, but resized to contain a
constant width and allowing the height to be calculated to match the
original orientation.

See Also
FileStream, Image, Bitmap, and Graphics

1.13 Implementing Ajax to Enhance the User Experience
Problem
When you click a link and the full web page is reloaded with the updated content, this
can feel like a slow process, especially when only a small amount of the content is being
updated.

Solution
Update previously created Html.ActionLink calls to use the Ajax helper and the
Ajax.ActionLink to only reload the content being changed.

Discussion
MVC provides several great helper classes. So far throughout this book, the HTML
helper class has been used extensively. In all of the views created, it was used at least

60 | The Recipes

http://msdn.microsoft.com/en-us/library/system.io.filestream.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.image.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.bitmap.aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.aspx

once in each of them. In this recipe, the HTML helper class will be swapped out in the
Books/Index view and replaced with the Ajax helper class.

Implementing Ajax requires a bit of additional setup before it can be used. Oftentimes
I have found that this additional work can deter developers from using it. Let it be
known that the additional setup time required is well worth it, because the benefits
gained in the user experience are well worth the effort.

The setup starts with the Web.config file. Two keys must be set to true, ClientValida
tionEnabled and UnobtrusiveJavaScriptEnabled:

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="ApplicationServices" connectionString=
 "data source=.\SQLEXPRESS;Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true" providerName="System.Data.SqlClient"/>
 </connectionStrings>

 <appSettings>
 <add key="webpages:Version" value="1.0.0.0" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
 <add key="smtpServer" value="localhost" />
 <add key="smtpPort" value="25" />
 <add key="smtpUser" value="" />
 <add key="smtpPass" value="" />
 </appSettings>

 <system.web>
 <compilation debug="true" targetFramework="4.0">
 <assemblies>
 <add assembly="System.Web.Abstractions,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Web.Helpers,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Web.Routing,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Web.Mvc,
 Version=3.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />
 <add assembly="System.Web.WebPages,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35" />

 <add assembly="System.Data.Entity,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" />
 </assemblies>
 </compilation>

1.13 Implementing Ajax to Enhance the User Experience | 61

 ...
 </system.web>

 ...
</configuration>

The final setup step that needs to be completed is to include several JavaScript files.
This will be done in the shared layout that is used by all of the views created to date.
In Views/Shared/_Layout.cshtml, two JavaScript files have been included in the
<head> tag:

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")"
 rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 <script src="
 @Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")"
 type="text/javascript"></script>
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay">
 @Html.Partial("_LogOnPartial")
 [@Html.ActionLink("English", "ChangeLanguage",
 "Home", new { language = "en" }, null)]
 [@Html.ActionLink("Français", "ChangeLanguage",
 "Home", new { language = "fr" }, null)]
 </div>
 <div id="menucontainer">
 <ul id="menu">

 @Html.ActionLink("Home", "Index", "Home")

 @Html.ActionLink("About", "About", "Home")

 </div>
 </div>

 <div id="main">
 @RenderBody()
 </div>
 <div id="footer">
 </div>

62 | The Recipes

 </div>
</body>
</html>

These files are automatically included in the base MVC 3 application. That completes
the core of the Ajax setup. Next, the Books/Index view will be updated. In the following
example, the three filter links and sortable header links have been updated to use the
Ajax.ActionLink instead of the Html.ActionLink:

@model PagedList.IPagedList<MvcApplication4.Models.Book>

@if (IsAjax)
{
 Layout = null;
}

<h2>@MvcApplication4.Resources.Resource1.BookIndexTitle</h2>

<p>
 @Html.ActionLink("Create New", "Create")
</p>
<p>
 Show:
 @if (ViewBag.CurrentFilter != "")
 {
 @Ajax.ActionLink("All", "Index", new {
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:All
 }
 |
 @if (ViewBag.CurrentFilter != "NewReleases")
 {
 @Ajax.ActionLink("New Releases", "Index", new {
 filter = "NewReleases",
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:New Releases
 }
 |
 @if (ViewBag.CurrentFilter != "ComingSoon")

 {
 @Ajax.ActionLink("Coming Soon", "Index", new {
 filter = "ComingSoon",
 sortOrder = ViewBag.CurrentSortOrder,
 Keyword = ViewBag.CurrentKeyword },

1.13 Implementing Ajax to Enhance the User Experience | 63

 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:Coming Soon
 }
</p>
@using (Html.BeginForm())
{
 @:Search: @Html.TextBox("Keyword")
 <input type="submit" value="Search" />
}
@Html.Partial("_Paging")
<table>
 <tr>
 <th>
 @Ajax.ActionLink("Title", "Index", new {
 sortOrder = ViewBag.TitleSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th>
 <th>
 @Ajax.ActionLink("Isbn", "Index", new {
 sortOrder = ViewBag.IsbnSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th>
 <th>
 Summary
 </th>
 <th>
 @Ajax.ActionLink("Author", "Index", new {
 sortOrder = ViewBag.AuthorSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th>
 <th>
 Thumbnail
 </th>
 <th>
 @Ajax.ActionLink("Price", "Index", new {
 sortOrder = ViewBag.PriceSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 </th>

 <th>
 @Ajax.ActionLink("Published", "Index", new {
 sortOrder = ViewBag.PublishedSortParam,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },

64 | The Recipes

 new AjaxOptions { UpdateTargetId = "main" })
 </th>
 <th></th>
 </tr>

@foreach (var item in Model)
{
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Title)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Isbn)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Summary)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Author)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Thumbnail)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Price)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Published)
 </td>
 <td>
 @Html.ActionLink("Edit",
 "Edit", new { id = item.ID }) |
 @Html.ActionLink("Details",
 "Details", new { id = item.ID }) |
 @Html.ActionLink("Delete",
 "Delete", new { id = item.ID })
 </td>
 </tr>
}

</table>

@Html.Partial("_Paging")

The key thing that was done is that new AjaxOptions were added as the last parameter
of the ActionLink function. This means that when the Ajax link is clicked by the user,
the results of the Ajax request should update the HTML element with the id of main.
If you look in the shared layout altered earlier, you will notice that it contains a <div>
with the id of main. In fact, this <div> is the container for the @RenderBody() function
which is where the output of a view goes.

The other important thing that was done is a check for Ajax done at the top of the view.
If the request was completed via Ajax, the layout is set to null. This is an extremely
important factor because if this isn’t done, the results of the Ajax request will contain

1.13 Implementing Ajax to Enhance the User Experience | 65

not only the results of the view, but the full layout as well, which would be placed inside
of the layout again.

To finish off this example, the Shared/_Paging view will also be updated to use the Ajax
helper as well:

<p>
 @if (Model.HasPreviousPage)
 {
 @Ajax.ActionLink("<< First", "Index", new {
 page = 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 @Html.Raw(" ");
 @Ajax.ActionLink("< Prev", "Index", new {
 page = Model.PageNumber - 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:<< First
 @Html.Raw(" ");
 @:< Prev
 }

 @if (Model.HasNextPage)
 {
 @Ajax.ActionLink("Next >", "Index", new {
 page = Model.PageNumber + 1,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 @Html.Raw(" ");
 @Ajax.ActionLink("Last >>", "Index", new {
 page = Model.PageCount,
 sortOrder = ViewBag.CurrentSortOrder,
 filter = ViewBag.CurrentFilter,
 Keyword = ViewBag.CurrentKeyword },
 new AjaxOptions { UpdateTargetId = "main" })
 }
 else
 {
 @:Next >
 @Html.Raw(" ")
 @:Last >>
 }
</p>

66 | The Recipes

Now when the user clicks on a link that changes the list of books, the full page is not
reloaded and only the list of books is updated, providing a much better and faster user
experience.

Also, if the client does not support JavaScript (e.g., when a search engine visits), the
link will still function normally, allowing both a user with JavaScript disabled and the
search engine to still access the content through a normal full page reload.

See Also
AjaxHelper

1.14 Submitting a Form with Ajax
Problem
You have a page that lists important detail and you want to allow the user to quickly
and easily submit a form without reloading the whole page and losing their place on
the website.

Solution
Using the AjaxHelper, create a new form that is submitted by Ajax and automatically
updates the existing content with the newly submitted item.

Discussion
The following example is going to put several of the previous recipes together, to dem-
onstrate how to allow users to submit a comment on a book without being redirected
to different pages to both see the comments and submit their own comment.

To start with, a new model must be created that will store the comments for a book.
With the Models folder selected, right-click and choose Add→Class. The name of the
class will be BookComment.cs. This model will store the comment submitted about a
specific book:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.ComponentModel.DataAnnotations;

namespace MvcApplication4.Models
{
 public class BookComment
 {
 public int ID { get; set; }
 [Required]
 public string Comment { get; set; }

1.14 Submitting a Form with Ajax | 67

http://msdn.microsoft.com/en-us/library/system.web.mvc.ajaxhelper.aspx

 public DateTime Created { get; set; }

 public int BookId { get; set; }
 public virtual Book Book { get; set; }
 }

}

Next, the previously created BookDBContext must be updated to contain a reference to
this table. This class was previously created in the original Book model. At this point,
it would make sense to create a new file specifically to store this class, as it might
continue to grow in your project with future tables. Right-clicking on the Models folder
again, select Add→Class. The name of this class will be BookDBContext:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;

namespace MvcApplication4.Models
{
 public class BookDBContext : DbContext
 {
 public DbSet<Book> Books { get; set; }
 public DbSet<BookComment> BookComments { get; set; }
 }
}

At this point, you should rebuild your application so that the newly created model will
appear in the next step.

Once this class is created, you can remove it from the Book model class. Next, a new
controller must be created that will perform the listing of comments and the ability to
manage them. With the Controllers folder selected, click Add→Controller. The name
of the controller will be BookCommentsController.cs. To minimize the typing required,
the new controller will be scaffolded with the Entity Framework. For the Model Class,
choose the newly created BookComment model. For the Data context class, choose the
previously created BookDBContext. Select Add once all of the settings are chosen.

When you run the application the next time, you should receive an error indicating
that the BookDBContext has changed since it was last used. To solve this, you must create
an initializer for the DBContext. Because this is not a production website, the initializer
is going to drop and recreate the database. To perform this, right-click on the Models
folder and select Add→Class. This class will be called BookInitializer.cs:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Data.Entity;

namespace MvcApplication4.Models

68 | The Recipes

{
 public class BookInitializer :
 DropCreateDatabaseIfModelChanges<BookDBContext>
 {
 }
}

Next the Global.asax.cs must be updated to call this BookInitializer on Applica
tion_Start:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 ...

 protected void Application_Start()
 {
 Database.SetInitializer<BookDBContext>(
 new BookInitializer());

 ...
 }

 ...
 }
}

The setup work is now all complete, and it’s time to perform the necessary updates to
allow users to comment on a book with Ajax. This process will be started with the
Books/Details view, as this is the most logical spot to display comments about the book:

@model MvcApplication4.Models.Book

@{
 ViewBag.Title = "Details";
}

<h2>Details</h2>

<fieldset>
 <legend>Book</legend>

 <div class="display-label">Title</div>

1.14 Submitting a Form with Ajax | 69

 <div class="display-field">
 @Html.DisplayFor(model => model.Title)
 </div>

 <div class="display-label">Isbn</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Isbn)
 </div>

 <div class="display-label">Summary</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Summary)
 </div>

 <div class="display-label">Author</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Author)
 </div>

 <div class="display-label">Thumbnail</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Thumbnail)
 </div>

 <div class="display-label">Price</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Price)
 </div>

 <div class="display-label">Published</div>
 <div class="display-field">
 @Html.DisplayFor(model => model.Published)
 </div>
</fieldset>
<fieldset>
 <legend>Comments</legend>
 <div id="Comments">
 @{Html.RenderAction("Index", "BookComments",
 new { BookId = Model.ID });}
 </div>
</fieldset>
<p>
 @Html.ActionLink("Edit", "Edit", new { id=Model.ID }) |
 @Html.ActionLink("Back to List", "Index")
</p>

In the above example, a new <fieldset> has been added beneath the details of the book.
Inside this <fieldset> a new <div> has been created with the id of Comments. Inside this
<div> an Html.RenderAction is performed to the BookComments Index function passing a
parameter called BookId with the id of the current book.

Next, the BookComments/Index view needs to be updated. In the following example, the
Create New link is updated to display the form via Ajax instead of redirecting the user
to a new page. A new <div> has been placed right beneath this link, which will be used

70 | The Recipes

to populate the form when the Ajax call completes. A few links have been removed as
well, because no comment managing will be provided—only the ability to add
comments.

@model IEnumerable<MvcApplication4.Models.BookComment>

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

<p>
 @Ajax.ActionLink("Create New", "Create", new {
 BookId = ViewBag.BookId },
 new AjaxOptions { UpdateTargetId = "AddComment" })
</p>
<div id="AddComment"></div>
<table>
 <tr>
 <th>
 Comment
 </th>
 <th>
 Created
 </th>
 </tr>

@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Comment)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Created)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Book.Title)
 </td>
 </tr>
}

</table>

The final view that requires changes is the automatically generated BookComments/
Create view. This view is updated to use the Ajax.BeginForm instead of the default
Html.BeginForm. The other thing that is done is tell the form to call a JavaScript function
called ReloadComments when the Ajax submit is completed. This function performs an
Ajax request with JQuery to retrieve the updated comments list. A hidden form field
was also created with the BookId instead of the automatically created drop-down list of
books.

@model MvcApplication4.Models.BookComment

1.14 Submitting a Form with Ajax | 71

@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>

<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="
 @Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>
<script type="text/javascript">
 function ReloadComments() {
 $("#Comments").load("@Url.Content(
 "~/BookComments/Index?BookId=" + ViewBag.BookId)");
 }
</script>
@using (Ajax.BeginForm(new AjaxOptions {
 OnComplete="ReloadComments()" }))
{
 @Html.Hidden("BookId", (int)ViewBag.BookId);
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>BookComment</legend>

 <div class="editor-label">
 @Html.LabelFor(model => model.Comment)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.Comment)
 @Html.ValidationMessageFor(model => model.Comment)
 </div>

 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}

To complete this example, a few changes are required to the BookCommentsController:

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;

namespace MvcApplication4.Controllers
{
 public class BookCommentsController : Controller
 {
 private BookDBContext db = new BookDBContext();

72 | The Recipes

 //
 // GET: /BookComments/

 public ActionResult Index(int BookId)
 {
 ViewBag.BookId = BookId;
 var bookcomments = db.BookComments.Include(
 b => b.Book).Where(b => b.BookId == BookId);
 return PartialView(bookcomments.ToList());
 }

 //
 // GET: /BookComments/Create

 public ActionResult Create(int BookId)
 {
 ViewBag.BookId = BookId;
 return PartialView();
 }

 //
 // POST: /BookComments/Create

 [HttpPost]
 public ActionResult Create(BookComment bookcomment)
 {
 if (ModelState.IsValid)
 {
 bookcomment.Created = DateTime.Now;
 db.BookComments.Add(bookcomment);
 db.SaveChanges();
 }

 ViewBag.BookId = bookcomment.BookId;
 return PartialView(bookcomment);
 }

 protected override void Dispose(bool disposing)
 {
 db.Dispose();
 base.Dispose(disposing);
 }
 }
}

1.14 Submitting a Form with Ajax | 73

In the above example, the Index function has been updated to accept an integer for the
BookId. This is set to the ViewBag. The other important change to this function is, instead
of returning a full view, only a partial view is returned (preventing the full layout from
being displayed). If you recall in the previous example, we reused the same view to
perform the Ajax request, and had to check within the view to see if it was an Ajax
request, to disable the layout. Since this view is only displayed via Ajax, it’s simpler to
update the controller to return a partial view.

Finally, the Create functions have been updated as well. The basic Create function has
been updated just like the Index to accept a BookId and return a partial view. The second
Create function has been updated to set the created date of the comment to now, and
if there is an error, to return a partial view. The additional Edit, Details, and Delete
functions have been removed since they are not being used. These views can also be
deleted since they are not being used.

Now when a user is viewing the details of a book, they can see the list of comments
already posted and if they wish to add their own comment, they can click the Create
New link, enter their comment, click Submit, and automatically see their newly created
comment without ever having to leave the book details page.

1.15 Enabling a CAPTCHA
Problem
Unfortunately there are people who use automated programs to submit forms, causing
a lot of spam throughout the Internet. One of the ways to prevent this is to implement
a CAPTCHA (an acronym for “Completely Automated Public Turing test to tell Com-
puters and Humans Apart”), which forces users to type a generated word into a text
box.

Solution
Install the ASP.NET Web Helpers Library from NuGet to integrate a CAPTCHA into
the BookCommentsController.

Discussion
A new library package is required to enable a CAPTCHA on a form. Microsoft has
created a NuGet Web Helpers library that contains a built in CAPTCHA class that easily
let’s us render and validate the CAPTCHA entered by the user.

With the MVC Application project selected in Visual Studio, click Tools→Library
Package Manager→Add Library Package Reference. Once loaded, select the Online but-
ton on the left. On the first page, there should be a package called microsoft-web-
helpers—if it is not there, try searching for it in the top right. Once found, click the
Install button.

74 | The Recipes

The most typical places where automated form submission software is used are com-
ment submissions. Since in a previous recipe, comments on books were added, this is
a perfect spot to add the CAPTCHA. Before starting, you must register your domain
at the RECAPTCHA website. When you have completed registration, you will receive
a public and private key for your domain. Copy and paste these somewhere for future
use.

If you are not using Ajax to include the CAPTCHA, you can simplify
the view changes by simply adding the two following lines in your view:

@using Microsoft.Web.Helpers;

@ReCaptcha.GetHtml("<your_public_key>", "<your_private_key>")

With the setup complete, it’s time to start updating the code. A small update must be
made to the BookComments/Index view. This view was previously created to Ajax the
create comment on the page. This Ajax request needs to be updated to display the
CAPTCHA button, by calling the DisplayCaptcha JavaScript function when the request
is complete.

@model IEnumerable<MvcApplication4.Models.BookComment>

@{
 ViewBag.Title = "Index";
}

<h2>Index</h2>

<p>
 @Ajax.ActionLink("Create New", "Create", new {
 BookId = ViewBag.BookId },
 new AjaxOptions { UpdateTargetId = "AddComment",
 OnComplete = "DisplayCaptcha" })
</p>
<div id="AddComment"></div>

...

<script type="text/javascript" src=
 "http://www.google.com/recaptcha/api/js/recaptcha_ajax.js">
</script>
<script type="text/javascript">
 function DisplayCaptcha() {
 Recaptcha.destroy();
 Recaptcha.create("<your_public_key>", "captcha", {});
 }
</script>

Now the BookComments/Create view needs to be updated in a similar fashion. First, a
new spot needs to be created for the CAPTCHA to be displayed. Also, a new HTML
error message is added to tell the user when they enter an incorrect caption. Finally,

1.15 Enabling a CAPTCHA | 75

http://www.google.com/recaptcha

the ReloadComments JavaScript function is updated to not automatically reload the com-
ments (only when there are no errors).

@model MvcApplication4.Models.BookComment
@{
 ViewBag.Title = "Create";
}

<h2>Create</h2>

@section JavascriptAndCSS {
<script src="@Url.Content("~/Scripts/jquery.validate.min.js")"
 type="text/javascript"></script>
<script src="
 @Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")"
 type="text/javascript"></script>
}

<script type="text/javascript">
 function ReloadComments() {
 var reload = "@ViewBag.RefreshComments";
 if (reload == "False") {
 DisplayCaptcha();
 } else {
 $("#Comments").load(
 "/BookComments/Index?BookId=@ViewBag.BookId");
 }
 }
</script>
@using (Ajax.BeginForm(new AjaxOptions {
 UpdateTargetId="AddComment", OnComplete="ReloadComments" }))
{
 @Html.Hidden("BookId", (int)ViewBag.BookId);
 @Html.ValidationSummary(true)
 <fieldset>
 <legend>BookComment</legend>

 <div class="editor-label">
 @Html.LabelFor(model => model.Comment)
 </div>
 <div class="editor-field">
 @Html.TextAreaFor(model => model.Comment)
 @Html.ValidationMessageFor(model => model.Comment)
 </div>

 <div class="editor-label">
 Are you human?
 </div>

 <div class="editor-field">
 <div id="captcha"></div>
 @Html.ValidationMessage("Captcha")
 </div>

76 | The Recipes

 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
}

Finally, the BookCommentsController needs to be updated to validate the CAPTCHA
entered by the user. If the CAPTCHA is invalid, an error message is added to the
ModelState so the view will display it properly.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using Microsoft.Web.Helpers;

namespace MvcApplication4.Controllers
{
 public class BookCommentsController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /BookComments/

 public ActionResult Index(int BookId)
 {
 ViewBag.BookId = BookId;
 var bookcomments = db.BookComments.Include(
 b => b.Book).Where(b => b.BookId == BookId);
 return PartialView(bookcomments.ToList());
 }

 //
 // GET: /BookComments/Create

 public ActionResult Create(int BookId)
 {
 ViewBag.BookId = BookId;
 ViewBag.RefreshComments = false;
 return PartialView();
 }

 //
 // POST: /BookComments/Create

 [HttpPost]
 public ActionResult Create(BookComment bookcomment)
 {

1.15 Enabling a CAPTCHA | 77

 ViewBag.RefreshComments = false;
 var captchaSuccess = ReCaptcha.Validate(
 "<your_private_key>");

 if (ModelState.IsValid && captchaSuccess)
 {
 bookcomment.Created = DateTime.Now;
 db.BookComments.Add(bookcomment);
 db.SaveChanges();

 ViewBag.RefreshComments = true;
 }

 // if captcha failed add error message
 if (!captchaSuccess)
 {
 ModelState.AddModelError("Captcha",
 "Invalid CAPTCHA");
 }

 ViewBag.BookId = bookcomment.BookId;
 return PartialView(bookcomment);
 }

 protected override void Dispose(bool disposing)
 {
 db.Dispose();
 base.Dispose(disposing);
 }
 }
}

1.16 Mobilizing Your Website
Problem
By default, your website probably won’t display well on a mobile device. Granted, some
devices are good enough to make it fit on the phone, but it won’t be fluid and you
probably don’t want to build a whole new website for a mobile phone, as that becomes
costly.

Solution
Using the JQuery Mobile NuGet package, alter the shared layout and views and make
a website that will look good both on a traditional browser and most mobile phones.

Discussion
First and foremost, if you have been reading the roadmap regarding MVC 4, you will
have noticed a lot of discussion around mobile enhancements—specifically the
adaptation of using the JQuery Mobile toolkit that will be used in this example.

78 | The Recipes

Unfortunately, at this time it’s too early to tell how far this will be taken in MVC 4, as
a lot of things indicate that we “might” provide it. So instead of waiting for it, I will
provide an extremely straightforward solution that requires minimal effort to maintain
both a mobile web application and a regular web application. Furthermore, with Win-
dows 8 coming out soon and support for HTML5 web applications right on the desk-
top, it will also be a desktop application.

Maintaining multiple versions of the same website does come with risks
and additional time requirements. Each time you add new functionality,
you must firstly test the new functionality in the multiple environments,
as well as regression test in the multiple environments. Also, just because
this is considered “straightforward” doesn’t mean that it’s mindless: a
lot of thought must be given to the organization of the page structure
to ensure it’s built as best as possible for both major platforms: desktop
browser and mobile browser.

To begin with, the JQuery Mobile package needs to be added through the NuGet pack-
age manager. With the current build of MVC 3, JQuery 1.5.x is included by default
with the application. The current version of JQuery Mobile depends on version 1.6.x,
so the versions of JQuery must be updated. Luckily the NuGet package manager has
created a simple way to perform this.

With the MVC Application project selected, click Tools→Library Package Manag-
er→Add Library Package Reference. Instead of adding the JQuery Mobile package, the
existing JQuery packages must be updated. On the left, select the Update button. This
will contain a list of the currently installed packages that have been updated. Before
updating the base JQuery package, several of its child packages must be updated first.

If you receive any errors while updating any of the packages because of
reference issues, be sure to read the versions indicated and try updating
those packages first.

I found the following order to work successfully (click each and then select Update,
then move on to the next): Jquery.Validation, Jquery.vs.doc, Jquery.ui.combined, and
finally the JQuery package itself.

Several changes have occurred between JQuery 1.5.x and JQuery 1.6.x,
so before updating your version, please read the changelog to ensure
that your existing code will not cease to function because of the upgrade.

Once all the package updates have been performed, you can now click on the Online
button from the left menu. In the search box, type Jquery.Mobile and click Install. This
will install the necessary CSS and JavaScript files required to use the JQuery add-on.

1.16 Mobilizing Your Website | 79

The JQuery Mobile plugin is based on HTML5 syntax. Using this syntax, various CSS
and JavaScript manipulations are done within the page to provide the desired look that
closely matches built-in applications on some of the more popular smartphones.

The purpose of this example is demonstrate how an existing website can be updated
to use this new library and still maintain a web version as well as a mobile version. To
begin, the Shared/_Layout view needs to be updated to match the JQuery Mobile page
anatomy syntax.

<!DOCTYPE html>

<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content(
 "~/Content/jquery.mobile-1.0b1.min.css")"
 rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.6.2.min.js")"
 type="text/javascript"></script>

 <script type="text/javascript">
 $(document).ready(function () {
 if (window.innerWidth > 480) {
 $("link[rel=stylesheet]").attr({ href:
 "@Url.Content("~/Content/Site.css")" });
 }
 });
 </script>

 <script src="@Url.Content(
 "~/Scripts/jquery.mobile-1.0b1.min.js")"
 type="text/javascript"></script>

 @RenderSection("JavaScriptAndCSS", required: false)
</head>
<body>
 <div class="page" data-role="page">
 <div id="header" data-role="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay" class="ui-bar">
 @Html.Partial("_LogOnPartial")
 [@Html.ActionLink("English", "ChangeLanguage",
 "Home", new { language = "en" }, null)]
 [@Html.ActionLink("Français", "ChangeLanguage",
 "Home", new { language = "fr" }, null)]
 </div>
 <div id="menucontainer" class="ui-bar">
 <ul id="menu">
 @Html.ActionLink("Home", "Index", "Home",
 null, new Dictionary<string, object>
 {{ "data-role", "button" }})

80 | The Recipes

 @Html.ActionLink("About", "About", "Home",
 null, new Dictionary<string, object>
 {{ "data-role", "button" }})

 </div>
 </div>
 <div id="main" data-role="content">
 @RenderBody()
 </div>
 <div id="footer" data-role="footer">
 </div>
 </div>
</body>
</html>

Hopefully the above example looks pretty similar to you. This is the shared layouts’
base HTML as was created with the project template. To make it function for JQuery
Mobile, the following things have been done:

1. Included the JQuery Mobile CSS file

2. Included the JQuery Mobile JavaScript file

3. Added multiple data-role attributes to the existing <div> tags that contained the
page, header, content, and footer elements, as well as several other classes and
data-role for menu affects

4. Added some JavaScript detection to swap out the CSS if the browser size is greater
than 480 pixels, to include the default CSS

There are several ways to accomplish the last item (e.g., use the
@media tag in CSS to target screen sizes, perform phone and browser
detection, and so on). Based on your needs you will need to determine
what’s the best solution. Maybe your website should perform some sort
of detection, or perhaps even web browsers should use the mobile tem-
plate—it’s up to you.

If you were to run the application twice (once in full screen mode, and once on your
mobile device or by simply resizing the browser below 480 pixels), you will see two
very different websites (see Figures 1-6 and 1-7).

As you can tell, there is still a lot of work to be done to make everything look good, but
by adding a few additional data-role attributes to the default layout, 90% of the work
has been completed already. The next steps are exploring particular features that are
of interest for your website. JQuery Mobile has full functionality for the following basic
smartphone features:

• Navbars (in header or footer, with or without icons)

• Page transitions

• Dialogs

1.16 Mobilizing Your Website | 81

• Buttons

• Forms

• List views (that provide the typical finger scrolling on the mobile platform)

• Full theming support to swap out the complete look-and-feel

Example Navbars:

<div id="logindisplay" class="ui-bar">
 @Html.Partial("_LogOnPartial")
 @Html.ActionLink("English", "ChangeLanguage", "Home",
 new { language = "en" }, null)]
 @Html.ActionLink("Français", "ChangeLanguage", "Home",
 new { language = "fr" }, null)]
</div>

The following example will render typical smartphone-looking buttons, and additional
links will all be added with the same style.

Example Page Transition:

@Html.ActionLink("My Cool Link", "SomeAction", "Home", null,
 new Dictionary<string, object>
 {{ "data-transition", "slide" }})

The following page transition will slide in the new content once the link has been loaded
via Ajax. In our standard website, this would work as every other link currently does.

Figure 1-6. Default MVC template

82 | The Recipes

Example Dialog:

@Html.ActionLink("My Cool Link", "SomeAction", "Home", null,
 new Dictionary<string, object>
 {{ "data-rel", "dialog" }})

Just like the previous example, this will render a generic link for a web browser, but in
the mobile version, the standard popup would be displayed.

Figure 1-7. Default JQuery Mobile template

1.16 Mobilizing Your Website | 83

Example Button:

<div data-role="page">
 <div data-role="header">
 @Html.ActionLink("Cancel", "SomeAction", "Home", null,
 new Dictionary<string, object>
 {{ "data-icon", "delete" }})
 <h1>Page Title</h1>
 @Html.ActionLink("Save", "SomeAction", "Home", null,
 new Dictionary<string, object>
 {{ "data-icon", "check" }})
 </div>
</div>

As you might expect because these buttons are placed within the header, they will be
rendered in the top bar, one on the left and one on the right, mimicking standard header
button functionality in smartphones today.

Example Form Item:

 <div class="editor-label">
 @Html.LabelFor(model => model.ShortName)
 </div>
 <div class="editor-field">
 @Html.EditorFor(model => model.ShortName)
 @Html.ValidationMessageFor(model => model.ShortName)
 </div>

There is no change required. Most of the built-in form functionality will render exactly
as expected with JQuery Mobile.

Example List View:

<ul data-role="listview" data-inset="true">
 <li data-role="list-divider">Books
 @foreach (var item in Model)
 {
 @Html.ActionLink(
 item.Title, "Details", new { id = item.ID })

 }

The above example will list all of the books, with their title set up as a link to the details
page in a standard scrollable list.

Changing Theme Example:

Currently, JQuery Mobile contains five built-in themes, lettered from a through e. Each
of the above items can have their theme changed by appending a new attribute called
data-theme with a different letter (a through e).

See Also
JQuery Mobile

84 | The Recipes

http://jquerymobile.com/

1.17 Paging Through Content Without the Pages
Problem
A lot of websites today interact with a database. If your website receives a lot of traffic,
the SQL queries to retrieve the data can be quite intense. More importantly because
the average user clicks a link within 15 seconds of arriving at your website, the work
to retrieve and generate the content might be unnecessary, especially when the content
is “below the fold” (not visible without scrolling first). To help solve this issue, content
will be loaded “on-demand”. Enough content will be loaded to make the page feel
populated and as the user scrolls down to read it, more content will be populated behind
the scenes without affecting the user experience.

Solution
Using Asynchronous controllers along with JQuery to load a specific amount of upfront
content and then load further content on-demand when the user begins scrolling
through the website content.

Discussion
Asynchronous controllers are probably underused in many MVC applications to date—
most likely because people don’t know about them, or more importantly, don’t know
when to use them. The following is an excerpt from the MSDN site listed in the See
Also section:

“In applications where thread starvation might occur, you can configure actions to be
processed asynchronously. An asynchronous request takes the same amount of time to
process as a synchronous request. For example, if a request makes a network call that
requires two seconds to complete, the request takes two seconds whether it is performed
synchronously or asynchronously. However, during an asynchronous call, the server is
not blocked from responding to other requests while it waits for the first request to
complete. Therefore, asynchronous requests prevent request queuing when there are
many requests that invoke long-running operations.”

In this example, using Asynchronous requests is the perfect solution because it will free
up IIS to serve more important requests, such as a new user arriving at the site for the
first time. Where as, loading on-demand content for a user is less important because
most people won’t even notice the additional content being loaded.

In a typical social website, a user’s comments are most likely to contain the most ac-
tivity. In a previous recipe, the ability to comment on a book was created. In this ex-
ample, the homepage of the site will be updated to list the most recent comments.
Enough comments will be displayed so that scroll bars will appear. Once the user begins
scrolling, an Ajax request to an asynchronous controller will be made to retrieve addi-
tional comments.

1.17 Paging Through Content Without the Pages | 85

To begin, the Home/Index view must be updated to display the most recent comments.
To provide some context around the comment, basic details about the book will also
be displayed with links to view the book. A new controller will be created to display
the comments, so this view will simply call the render function of the view to be created
further down.

@model IEnumerable<MvcApplication4.Models.BookComment>

@{
 ViewBag.Title = "Home Page";
}

<h2>@ViewBag.Message</h2>
<p>
 To learn more about ASP.NET MVC visit
 <a href="http://asp.net/mvc"
 title="ASP.NET MVC Website">
 http://asp.net/mvc.
</p>

<script type="text/javascript">
var lastY = 0;
var currentY = 0;
var page = 1;
var maxPages = @ViewBag.maxPages;

$(window).scroll(function () {
 if (page < maxPages) {
 currentY = $(window).scrollTop();
 if (currentY - lastY > 200 * (page - 1)) {
 lastY = currentY;
 page++;
 $.get('CommentFeed/Comments?page=' + page,
 function(data) {
 $('#comments').append(data);
 });
 }
 }
});
</script>

<div id="comments">
 <h2>Recent Comments</h2>
 @Html.Partial("../CommentFeed/Comments", Model)
</div>

In the above example, there is also some relatively complex JavaScript code that is
executed when the window is scrolled. Several global JavaScript variables are defined
to keep track of the current “y” scroll location, the last “y” scroll location, and the
current page being retrieved. When the window’s scrollTop position minus the last
scroll location is greater than a specific number, new book comments are retrieved
through Ajax and appended to the list of comments. For your own website, you will

86 | The Recipes

need to adjust the number of pixels that works best, based on the height of the content,
to ensure that new content is always retrieved in advance.

Next, the HomeController needs updating to retrieve the list of book comments. The
comments are ordered by the created date in descending order to ensure the newest
comments are displayed first. To prevent intense database load, the list of comments
will be reduced to a small number. This should be adjusted on your website to ensure
there is just enough content to cause scrollbars. In the example below, the comments
are limited to 3. The maximum number of pages is also determined by dividing the
total count of comments by 3. The max pages are used to prevent further Ajax calls
once the maximum comments have been returned.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Globalization;
using System.Data.Entity;
using MvcApplication4.Models;

namespace MvcApplication4.Controllers
{
 public class HomeController : Controller
 {
 private BookDBContext db = new BookDBContext();

 public ActionResult Index()
 {
 ViewBag.Message = "Welcome to ASP.NET MVC!";

 // Get our recent comments
 var bookcomments = db.BookComments.Include(
 b => b.Book).OrderByDescending(b => b.Created).
 Take(3);
 var count = db.BookComments.Count();
 ViewBag.maxPages = count / 3 + 1;

 return View(bookcomments);
 }

 ...
 }
}

This same functionality needs to be duplicated into a new asynchronous controller.
With the Controllers folder selected, right-click and select Add→Controller. The new
controller will be called CommentFeedController. This controller doesn’t need the scaf-
folded functions, so under the Template drop-down, change the selection to Empty
controller and press Add.

1.17 Paging Through Content Without the Pages | 87

This controller will look slightly different than a typical controller. With asynchronous
controllers, one view is split into two functions. The first function performs the asyn-
chronous request (e.g., retrieve the comments). The second function receives the results
of the asynchronous call and returns or displays the results.

In the following example, a partial view is rendered. In some applica-
tions, it might be beneficial to reduce the network traffic, return a JSON
result, and let the JavaScript code deal with the display. However, to
simplify this example and focus on asynchronous controllers, the former
will be used and a partial view is returned.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using System.Data.Entity;

namespace MvcApplication4.Controllers
{
 public class CommentFeedController : AsyncController
 {
 private BookDBContext db = new BookDBContext();

 public void CommentsAsync(int page)
 {
 AsyncManager.OutstandingOperations.Increment();
 AsyncManager.Sync(() =>
 {
 var bookcomments = db.BookComments.Include(
 b => b.Book).OrderByDescending(b =>
 b.Created).Skip(page * 3).Take(3);
 AsyncManager.Parameters["bookcomments"] =
 bookcomments;
 AsyncManager.OutstandingOperations.Decrement();
 });
 }

 public ActionResult CommentsCompleted(
 IEnumerable<BookComment> bookcomments)
 {
 return PartialView(bookcomments);
 }

 }
}

The first function, CommentsAsync, receives the current page passed in from JavaScript
and uses this value to retrieve the next three comments. The first thing that happens is
that the outstanding operations are incremented. Then through the Sync method, the

88 | The Recipes

comments are retrieved and passed as a variable to the second function. The final thing
that happens is that the outstanding operations is decremented. It’s important that the
increment and decrement counter match; otherwise, the sync manager will cancel the
request after a certain period of time when they do not match, to prevent never-ending
requests.

The second function receives the book comments and returns a partial view. This is
the same partial view that is called from the Home/Index view. The final step in this
process is to create the partial view. Begin by right-clicking on the Views folder and
select Add→New Folder. This folder should be called CommentFeed to match the controller
name. Then with this folder selected, right-click and select Add→View. The view will
be called Comments—be sure to check the Partial View before adding it.

@model IEnumerable<MvcApplication4.Models.BookComment>

@foreach (var item in Model) {
 <h3><a href="@Url.Action("Details", "Books", new {
 ID=item.Book.ID })">
 @Html.DisplayFor(modelItem => item.Book.Title)
 </h3>
 <h4>Comment Posted: @Html.DisplayFor(
 modelItem => item.Created)</h4>
 <p>@MvcHtmlString.Create(Html.Encode(item.Comment).Replace(
 Environment.NewLine, "
"))</p>
}

The following view loops through the comments and first displays the title of the book
and links to the details page of it, then the date the comment was created, and finally
the actual comment itself. Because comments might contain linebreaks, each new line
is replaced with a
 tag to match the spacing entered by the comment.

See Also
Asynchronous controllers

1.18 Displaying Search Results While Typing
Problem
When you are searching for something specific, it can be difficult (or take a long time)
to find it while you are trying to type the exact wording. By displaying results while the
user is typing, searching for something specific becomes much easier.

Solution
Updating the existing search on the book listing page to begin displaying results im-
mediately as the user types using JQuery’s Autocomplete plugin.

1.18 Displaying Search Results While Typing | 89

http://msdn.microsoft.com/en-us/library/ee728598(v=vs.98).aspx

Discussion
The Autocomplete plugin is not automatically included with MVC projects like the
base JQuery library, so the first thing that needs to be done is to download the plugin
by visiting http://jquery.com/. Two main files are required: the JavaScript file and the
CSS file. Place the newly downloaded JavaScript file in the Scripts folder of your MVC
application. The CSS file can be added to your Content directory.

This recipe will also introduce the use of rendering sections in a view. In the shared
layout view two JavaScript files and one CSS file are automatically included on each
page request. These are for the Ajax and unobtrusive Ajax and the sites main CSS file.
The more content that is loaded each time, the slower the page view. So rather than
automatically including JavaScript and CSS on every page when it’s not needed a new
RenderSection() will be added in the shared layout. This will allow specific views to
add additional JavaScript or CSS files inside the <head> tags, but not require every page
to add them.

Below is an updated Views/Shared/_Layout.cshtml with the new RenderSection():

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")"
 rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")"
 type="text/javascript"></script>
 @RenderSection("JavaScriptAndCSS", required: false)
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay">
 @Html.Partial("_LogOnPartial")
 [@Html.ActionLink("English", "ChangeLanguage",
 "Home", new { language = "en" }, null)]
 [@Html.ActionLink("Français", "ChangeLanguage",
 "Home", new { language = "fr" }, null)]
 </div>
 <div id="menucontainer">
 <ul id="menu">
 @Html.ActionLink("Home",
 "Index", "Home")
 @Html.ActionLink("About",
 "About", "Home")

 </div>
 </div>

90 | The Recipes

http://jquery.com/

 <div id="main">
 @RenderBody()
 </div>
 <div id="footer">
 </div>
 </div>
</body>
</html>

The main CSS file and core JQuery files have been left in because the CSS is required
on every page and the JQuery is required by a vast majority of the pages. However, the
new JQuery files and the previously added unobtrusive Ajax file are not required on
every page.

Now there are two ways to use the autocomplete plugin:

1. Setting the data to search in JavaScript

2. Retrieving the results via Ajax when the user types

In my experience with this plugin, I’ve found that the autocomplete is much faster with
solution 1, because it doesn’t need to request the data each time from the database.
However, there is a limit to the use of this solution: only so many characters can be
passed into the function, and also, rendering a large amount of JavaScript can cause
the page to load slowly on the user’s computer. After some trial-and-error, I’ve deter-
mined the magic number is around 40,000 results. If the number of results exceeds this,
it’s best to use option 2; otherwise, always stick to option 1 because the search is in-
stantaneous rather than having a slight delay.

In this example, the books will be searched and we don’t have more than 40,000, so
option one will be used. The BooksController must now be updated to set a ViewBag
variable with the list of book titles. The autocomplete function requires a JavaScript
array of items, so the books will be separated with a pipe (|). Then in the view, the
books will be converted to an array with the JavaScript split() function. When the
user is finished typing in their result, they should have selected an exact match title, so
this function will be updated if only 1 book is returned and the user has performed a
search that will automatically redirect them to the book details page.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{

1.18 Displaying Search Results While Typing | 91

 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/
 public ActionResult Index(string sortOrder,
 string filter, string Keyword, int page = 1)
 {
 #region ViewBag Resources
 ...
 #endregion

 #region ViewBag Sort Params
 ...
 #endregion

 var books = from b in db.Books select b;

 #region Keyword Search
 if (!String.IsNullOrEmpty(Keyword))
 {
 books = books.Where(b => b.Title.ToUpper().
 Contains(Keyword.ToUpper()) ||
 b.Author.ToUpper().Contains(
 Keyword.ToUpper()));

 // Should we redirect because of only one result?
 if (books.Count() == 1)
 {
 Book book = books.First();
 return RedirectToAction("Details",
 new { id = book.ID });
 }
 }
 ViewBag.CurrentKeyword =
 String.IsNullOrEmpty(Keyword) ? "" : Keyword;
 #endregion

 #region Filter switch
 ...
 #endregion

 books = books.OrderBy(sortOrder);

 int maxRecords = 1;
 int currentPage = page - 1;

 // Get all book titles
 ViewBag.BookTitles = FormatBooksForAutocomplete();

 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

92 | The Recipes

 private string FormatBooksForAutocomplete()
 {
 string bookTitles = String.Empty;
 var books = from b in db.Books select b;

 foreach (Book book in books)
 {
 if (bookTitles.Length > 0)
 {
 bookTitles += "|";
 }

 bookTitles += book.Title;
 }

 return bookTitles;
 }

 ...
 }
}

Finally the Books/Index view needs to be updated to initialize the JQuery autocomplete.
The first thing to do is to use the @section tag to include the necessary JavaScript and
CSS files. Next, the previously created search textbox is updated to set an id of Key
wordSearch. Finally, the JavaScript code is added at the bottom of the view to set up the
autocomplete function on the search textbox. This JavaScript is intentionally added at
the bottom of the view to ensure that the view is fully rendered to the user, because
“blocking” the load with the JavaScript processing might require a bit of work on the
user’s computer to set up the data, depending on the number of results.

@model PagedList.IPagedList<MvcApplication4.Models.Book>

@if (IsAjax)
{
 Layout = null;
}

@section JavascriptAndCSS {
<link rel="stylesheet" href="
 @Url.Content("~/Content/jquery.autocomplete.css")"
 type="text/css" />
<script src="@Url.Content(
 "~/Scripts/jquery.unobtrusive-ajax.min.js")"
 type="text/javascript"></script>
<script type="text/javascript" src="@Url.Content(
 "~/Scripts/jquery.autocomplete.js")"></script>
}

...

1.18 Displaying Search Results While Typing | 93

@using (Html.BeginForm())
{
 @:Search: @Html.TextBox("Keyword",
 (string)ViewBag.CurrentKeyword,
 new { id = "KeywordSearch" })
 <input type="submit" value="Search" />
}

...

<script type="text/javascript">
 $(document).ready(function () {
 var data = "@ViewBag.BookTitles".split("|");
 $("#KeywordSearch").autocomplete(data);
 });
</script>

To implement option 2, an Ajax search, instead of passing the array of data to the
autocomplete function, you would pass a URL. The URL would then need to accept a
query string variable, q . This contains the user-entered search value. This would then
be used to perform a search on the books that contain a partial match and would return
them as a string separated by a delimiter. The JQuery documentation contains more
complete examples of this, as well as other examples to update the output of the results
(perhaps to include a thumbnail of the book cover).

See Also
Jquery.Autocomplete, RenderSection

1.19 Routing Users to a Specific Controller and Action
Problem
In today’s heavily fought battles for search engine supremacy, it’s quite difficult to win
the race with a website address that looks like:

http://www.example.com/books/details?id=4.

Using routes, the website can look like:

http://www.example.com/20-recipes-for-mvc3

which provides much more context, both to the user and the search engine.

Solution
Use the MapRoute function from the RouteCollectionExtensions class to generate more
friendly names to display content instead of numerical IDs.

94 | The Recipes

http://docs.jquery.com/Plugins/autocomplete
http://msdn.microsoft.com/en-us/library/gg537886(v=vs.99).aspx

Discussion
Routing is set up in MVC through the Web.config and the Global.asax.cs file. In the
Web.config, the System.Web.Routing assembly is included and then used in the
Global.asax.cs file to create a default routing mechanism for all controllers and actions
in them. Hence when a BooksController is added, it can be accessed via the /Books
URL without an extension, like in ASP.NET websites.

The following recipe will demonstrate several different useful techniques for setting up
routes. The first route will allow the website to link directly to the title of the book. For
example, if there is a book called 20 Recipes for Programming MVC 3, it could be
accessed directly by visiting http://localhost/20 Recipes for Programming MVC 3, where-
as the current solution would require a more complicated URL like http://localhost/
Books/Details?id=1.

To begin creating this route, open the Global.asax.cs file in the MVC project. A
default route is created in the RegisterRoutes() function which is called from the
Application_Start() function when the website first loads. The example below con-
tains an updated RegisterRoutes function with the new route that is added with the
MapRoute function:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterGlobalFilters(
 GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "BookName", // Route name
 "{Keyword}", // URL with parameters

1.19 Routing Users to a Specific Controller and Action | 95

 new { controller = "Books", action = "Index",
 id = UrlParameter.Optional },
 new { Keyword = "\\w+" });

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}",
 // URL with parameters
 new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

 }

 protected void Application_Start()
 {
 Database.SetInitializer<BookDBContext>(
 new BookInitializer());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
 }

 protected void Application_AcquireRequestState(
 object sender, EventArgs e)
 {
 if (HttpContext.Current.Session != null)
 {
 CultureInfo ci =
 (CultureInfo)this.Session["CurrentLanguage"];
 if (ci == null)
 {
 ci = new CultureInfo("en");
 this.Session["CurrentLanguage"] = ci;
 }

 Thread.CurrentThread.CurrentUICulture = ci;
 Thread.CurrentThread.CurrentCulture =
 CultureInfo.CreateSpecificCulture(ci.Name);
 }
 }
 }
}

In the above example, the MapRoute function accepts four parameters:

1. The route name; in this case BookName.

2. The URL with any parameters; in this case, {Keyword}, which is a variable that will
be used later.

3. The parameter defaults for the controller, action, and any additional variables; in
this case, the default controller is Books and the default action is Index.

96 | The Recipes

4. The constraints (e.g., variables) for the URL; in this case, the previously mentioned
Keyword variable is passed to the index action in the BooksController.

The above route will take advantage of the previous change to the BooksController
when a keyword is being searched: that if only one result is returned, the user will be
redirected to the details page. This provides the user with the ability to enter a book
title or keyword in the URL after the domain name. If only one result is returned, the
user will see that book; otherwise, the user will see a search result with their keyword.

In the next example, a new route will be created that is a bit more complicated. It will
extend the RouteBase class, allowing for a much more complicated route. Instead of
searching for the book by the title at the end of the domain name, a subdomain will be
used instead. For example, http://mvc3book.localhost/ will return the book details for
the aforementioned book 20 Recipes for Programming MVC 3.

To allow for this, the Book model must be updated to include a new parameter called
ShortName. This parameter will be used as the subdomain, and allows for the books to
be searched for through the to-be-created class that extends the RouteBase class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.ComponentModel.DataAnnotations;
using MvcApplication4.Validations;

namespace MvcApplication4.Models
{
 public class Book
 {
 public int ID { get; set; }

 [Required]
 public string ShortName { get; set; }

 [Required]
 [Display(Name = "TitleDisplay", ResourceType =
 typeof(Resources.Resource1))]
 public string Title { get; set; }

 [Display(Name = "IsbnDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [Required]
 [IsbnValidation]
 public string Isbn { get; set; }

 [Display(Name = "SummaryDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [Required]
 public string Summary { get; set; }

 [Display(Name = "AuthorDisplay", ResourceType =
 typeof(Resources.Resource1))]

1.19 Routing Users to a Specific Controller and Action | 97

 [Required]
 public string Author { get; set; }

 [Display(Name = "ThumbnailDisplay", ResourceType =
 typeof(Resources.Resource1))]
 public string Thumbnail { get; set; }

 [Display(Name = "PriceDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [Range(1, 100)]
 public double Price { get; set; }

 [Display(Name = "PublishedDisplay", ResourceType =
 typeof(Resources.Resource1))]
 [DataType(DataType.Date)]
 [Required]
 public DateTime Published { get; set; }
 }

}

Now a new class must be created that will contain the logic behind the new route. With
the Utils folder selected, right-click and select Add→Class. This new class will be called
BookDomainRoute.cs. The following class will retrieve the domain name from the
Request.Headers for the current HttpContext. The domain name will then be split into
an array by the “.” operator. A bit of error checking is performed to ensure that we have
a subdomain that is not www. Then the first piece of the subdomain, e.g., the Short
Name, is used to perform a search on the books table to find the particular book. If the
book is found, a new object of the class RouteData is created that sets the controller to
be Books, the action to be Details, and finally the ID to be the ID of the book. If no
book is found, the homepage will be displayed. In the example below, it could easily
be altered to direct the user to an error page—or even to the Books/Index page with a
keyword search (as in the previous example).

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Routing;
using System.Web.Mvc;
using MvcApplication4.Models;

namespace MvcApplication4.Utils
{
 public class BookDomainRoute : RouteBase
 {
 private BookDBContext db = new BookDBContext();

 public override RouteData GetRouteData(
 HttpContextBase httpContext)
 {
 // Get the domain name
 var url = httpContext.Request.Url.Authority;

98 | The Recipes

 // Split into array of parts
 var pieces = url.Split('.');

 // Ensure there is a subdomain and it's not www
 if (pieces.Length < 2 && pieces[0] != "www")
 {
 return null;
 }

 string ShortName = pieces[0];

 // Find the book by ShortName
 var books = from b in db.Books select b;
 books = books.Where(b =>
 b.ShortName.ToUpper().Contains(ShortName.ToUpper())
);

 // Check to make sure a book was found
 if (books.Count() == 0)
 {
 return null;
 }

 // Get the first result
 Book book = books.First();

 // Set the route data
 RouteData routeData = new RouteData(this,
 new MvcRouteHandler());
 routeData.Values.Add("controller", "Books");
 routeData.Values.Add("action", "Details");
 routeData.Values.Add("id", book.ID);

 return routeData;
 }

 public override VirtualPathData GetVirtualPath(
 RequestContext requestContext,
 RouteValueDictionary values)
 {
 return null;
 }
 }
}

Finally the Global.asax.cs file must be updated again to include the newly created
route. A using statement is also added to the Utils directory so the new routing class
can be found.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

1.19 Routing Users to a Specific Controller and Action | 99

using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;
using MvcApplication4.Utils;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterGlobalFilters(
 GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 }

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.Add(new BookDomainRoute());

 routes.MapRoute(
 "BookName", // Route name
 "{Keyword}", // URL with parameters
 new { controller = "Books", action = "Index",
 id = UrlParameter.Optional },
 new { Keyword = "\\w+" });

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}",
 // URL with parameters
 new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

 }

 protected void Application_Start()
 {
 Database.SetInitializer<BookDBContext>(
 new BookInitializer());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);
 RegisterRoutes(RouteTable.Routes);
 }

 protected void Application_AcquireRequestState(
 object sender, EventArgs e)
 {
 if (HttpContext.Current.Session != null)

100 | The Recipes

 {
 CultureInfo ci =
 (CultureInfo)this.Session["CurrentLanguage"];
 if (ci == null)
 {
 ci = new CultureInfo("en");
 this.Session["CurrentLanguage"] = ci;
 }

 Thread.CurrentThread.CurrentUICulture = ci;
 Thread.CurrentThread.CurrentCulture =
 CultureInfo.CreateSpecificCulture(ci.Name);
 }
 }
 }
}

The following examples contain great starts to good uses for routes. Both can be easily
updated to perform other routing—for example, subdomains could be used to display
a user’s specific profile page, or the previously implemented multilingual recipe could
be updated to use a routing class to allow URLs like en.example.com or fr.example.com
to set the current language culture.

See Also
RouteCollectionExtension, RouteData

1.20 Caching Results for Faster Page Loads
Problem
As your website grows, both in popularity as well as dynamic content, these two factors
begin to slow down the average load time. Many users causes a lot of web server and
database requests. A lot of data requires strong database processing power to support
it. To prevent spending a lot of money of simply adding more web servers, smarter
programming to reduce unnecessary database or dynamic processing requests can sig-
nificantly increase the overall speed of your web application.

Solution
Implement the OutputCacheAttribute to cache data that doesn’t change often or only
changes with specific actions.

Discussion
Caching in MVC 3 is extremely easy. It’s as simple as adding the following attribute
above an action in a controller:

[OutputCache (Duration=600)]

1.20 Caching Results for Faster Page Loads | 101

http://msdn.microsoft.com/en-us/library/system.web.mvc.routecollectionextensions.aspx
http://msdn.microsoft.com/en-us/library/system.web.routing.routedata.aspx

This will cache the results of the view automatically for 600 seconds (or 10 minutes)
and be shared for each user visiting this page. That means if you have 1,000 visitors
requesting the same page in a matter of mere moments, caching the results can save on
thousands of requests to the database, and lower the processing time required by IIS
by simply loading an already fully processed view.

The output cache attribute looks quite simple, but when you start looking under the
hood, it can be as complicated as under the hood of a car—unless you are a mechanic.
This attribute allows you to define a lot about how to cache, from the duration to the
location, to even adding SQL dependency. This will be explored later in this recipe.

The duration of the caching is quite simple: you tell MVC how many seconds a view
should be cached for. The location is a little bit more complicated; this can be the
client’s browser, the server, or a combination of them. A good way to determine where
the caching should be done is to analyze the data being cached. If the data being cached
is shared across multiple users, it makes sense to cache this on the server. However, if
it is personal data, e.g., a customized homepage, it would make sense to cache this
locally on the user’s browser. While caching is great, it also has its limitations. Typically
the main limitation is memory; not everything can be cached on the server.

The most interesting option however, is the SQL dependency. The OutputCache allows
data to be cached until it actually changes in the database. This is an extremely useful
feature. Take for example, books: new books would not always be added daily, so the
duration might be set to an extending caching time (24 hours, perhaps). However, what
if a new book comes in before the cache expires, or if it was a slow week and no new
books were added for several days? In the first situation, a new book wouldn’t appear
right away, which wouldn’t make users too happy. In the second example, unnecessary
requests are being done to the server because no new books have been added. By ena-
bling SQL dependency, the caching will automatically be reset as soon as the books
table changes; exactly the effect we want.

This is a very nice feature; in other programming languages when you
need to manually control the cache, you would be required to invalidate
the cache yourself as the data changes. Trust me on this one—it can be
quite easy to miss a spot or two, preventing the cache from being cleared
properly.

In the following example, the cache will be set up on the book listing page. By default,
if you do not specify any values in the VaryByParam field, MVC 3 will automatically
create one cache entry per unique variable combination. This is a pretty nice feature;
however, in the book listings example, a keyword search field is accepted as one of the
parameters. Since hundreds, if not thousands, of different keyword combinations could
be entered, this variable should not be cached (see above warning about memory).
Instead, the params will be defined to exclude this variable. Below is an updated Book
sController to enable caching on this page:

102 | The Recipes

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/
 [OutputCache(Duration=600, VaryByParam=
 "sortOrder;filter;page")]
 public ViewResult Index(string sortOrder,
 string filter, string Keyword, int page = 1)
 {
 ...

 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...

 }
}

This code only will serve a pretty good caching solution and immediately reduce the
server load. This example will now be extended to include SQL dependency, as it re-
quires a bit of setup work to begin using it. To begin, the Web.config file needs updating.
Firstly, a database connection must be defined; and secondly, a caching section must
be defined for the SQL dependency as follows:

<?xml version="1.0"?>
<configuration>
 <connectionStrings>
 <add name="ApplicationServices" connectionString=
 "data source=.\SQLEXPRESS;Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true" providerName="System.Data.SqlClient"
 />
 <add name="BooksDBContext" connectionString=
 "Server=.\SQLEXPRESS;Database=
 MvcApplication4.Models.BookDBContext;
 Trusted_Connection=true" providerName=
 "System.Data.SqlClient" />

1.20 Caching Results for Faster Page Loads | 103

 </connectionStrings>

 ...

 <system.web>
 <caching>
 <sqlCacheDependency enabled="true" pollTime="2000">
 <databases>
 <add name = "MvcApplication4.Models.BookDBContext"
 connectionStringName = "BooksDBContext"/>
 </databases>
 </sqlCacheDependency>
 </caching>
 ...
 </system.web>

 ...
</configuration>

In the above example, the pollTime variable is set to 2000 milliseconds, meaning that
every 2 seconds, the cache database will be queried for changes. This should be altered
as required for your needs.

Now the Global.asax.cs needs to be updated. In the Application_Start function, the
SQL cache dependency must be set up, and each table that requires listening for updates
must be set up with the EnableTableForNotifications function of the SqlCache
DependencyAdmin class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using MvcApplication4.Models;
using System.Data.Entity;
using System.Globalization;
using System.Threading;
using MvcApplication4.Utils;

namespace MvcApplication4
{

 public class MvcApplication : System.Web.HttpApplication
 {
 ...

 protected void Application_Start()
 {
 Database.SetInitializer<BookDBContext>(
 new BookInitializer());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);

104 | The Recipes

 RegisterRoutes(RouteTable.Routes);

 String connectionString =
System.Configuration.ConfigurationManager.ConnectionStrings
["BooksDBContext"].ConnectionString;
 System.Web.Caching.SqlCacheDependencyAdmin.
EnableNotifications(connectionString);
 System.Web.Caching.SqlCacheDependencyAdmin.
EnableTableForNotifications(connectionString, "books");
 }

 ...
 }
}

Next, a command line prompt is required to perform several actions to complete the
SQL notifications. In Windows, perform the following steps:

Press Start -> Run
Type cmd and then press Enter
cd %windir%\Microsoft.NET\Framework\v4.0.30319\
aspnet_regsql.exe -S .\SQLEXPRESS -ed
 -d MvcApplication4.Models.BookDBContext -et -t books -E

Be sure to replace the server, database, and table name with your information. Also, if
your database contains a username and password, you will need to add additional input
parameters for them (-U and -P). Once the last command is run, two success messages
should be displayed: one indicating successful enabling of caching on the database, and
the second indicating successful enabling of caching on the specified table.

Finally, the BooksController requires a slight change to enable the SQL dependency.
Also, since the application will be notified of changes, the short duration time that was
previously set will be extended to use the max value for an Int32 value.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Web;
using System.Web.Mvc;
using MvcApplication4.Models;
using MvcApplication4.Utils;
using PagedList;

namespace MvcApplication4.Controllers
{
 public class BooksController : Controller
 {
 private BookDBContext db = new BookDBContext();

 //
 // GET: /Books/
 [OutputCache(Duration=Int32.MaxValue, SqlDependency =

1.20 Caching Results for Faster Page Loads | 105

 "MvcApplication4.Models.BookDBContext:books",
 VaryByParam="sortOrder,filter,page")]
 public ViewResult Index(string sortOrder, string filter,
 string Keyword, int page = 1)
 {
 ...

 return View(books.ToPagedList(currentPage,
 maxRecords));
 }

 ...

 }
}

In previous versions of MVC, partial caching was not supported, meaning that only an
entire action result could be cached. MVC 3 now supports partial caching. To enable
this, you would create a child action as you did in Recipe 1.14, Submitting a Form with
Ajax. The two actions in the BookCommentsController only return a PartialView, and
both of these child actions could be cached without the need to cache the parent action.
This is another great way to segregate your code and cache only the portions that don’t
change frequently.

See Also
OutputCacheAttribute, SqlCacheDependencyAdmin

1.21 Going Further
In this book I have tried to provide you with many useful recipes that will help you in
your day-to-day life to more easily accomplish recurring tasks or enhance a user’s over-
all experience on a website. By expanding upon the recipes involving Ajax, Mobile,
jQuery, and caching and expanding these examples further, your websites should be
able to take on a whole new user experience, with lightning-fast page results and ex-
tremely slick, responsive user interfaces.

Every day, developers are adding new library packages to the NuGet library that can
further enhance the user experience or further reduce your development time. By lev-
eraging these libraries, you will have an unlimited resource of features to enhance both
your website and development arsenal.

106 | The Recipes

http://msdn.microsoft.com/en-us/library/system.web.mvc.outputcacheattribute.aspx
http://msdn.microsoft.com/en-us/library/system.web.caching.sqlcachedependencyadmin.aspx

About the Author
Jamie Munro has been developing websites and web applications for over 15 years. For
the past six years, Jamie has been acting as a lead developer by mentoring younger
developers to enhance their web development skills.

Furthering his love of mentoring people, Jamie began his writing career on his personal
blog (http://www.endyourif.com) back in 2009. As Jamie’s blog grew in success, he
turned his writing passion to books about web development.

As well as writing books, Jamie is currently in the process of starting a new website
(http://www.webistrate.com) geared towards helping web developers further expand
their experience with many online examples using MVC3, CakePHP, CodeIgniter,
JQuery, Database Optimzation, and Search Engine Optimization.

http://www.endyourif.com
http://www.webistrate.com

	Table of Contents
	Preface
	About The Book
	Prerequisites
	Conventions Used in This Book
	Tools
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	The Recipes
	1.1 Restricting Access to Views with Password Protection
	Problem
	Solution
	Discussion
	See Also

	1.2 Automating Generation of Controllers and Views
	Problem
	Solution
	Discussion
	See Also

	1.3 Validating User Input
	Problem
	Solution
	Discussion
	See Also

	1.4 Implementing Multiple Languages
	Problem
	Solution
	Discussion
	See Also

	1.5 Sending a Welcome Email
	Problem
	Solution
	Discussion
	See Also

	1.6 Retrieving a Forgotten Password
	Problem
	Solution
	Discussion
	See Also

	1.7 Sorting a List of Results
	Problem
	Solution
	Discussion
	See Also

	1.8 Paging Through a List of Results
	Problem
	Solution
	Discussion

	1.9 Filtering a List of Results
	Problem
	Solution
	Discussion

	1.10 Searching a List of Results by Keyword
	Problem
	Solution
	Discussion

	1.11 Uploading a File Through a Form
	Problem
	Solution
	Discussion
	See Also

	1.12 Resizing an Image to Create a Thumbnail
	Problem
	Solution
	Discussion
	See Also

	1.13 Implementing Ajax to Enhance the User Experience
	Problem
	Solution
	Discussion
	See Also

	1.14 Submitting a Form with Ajax
	Problem
	Solution
	Discussion

	1.15 Enabling a CAPTCHA
	Problem
	Solution
	Discussion

	1.16 Mobilizing Your Website
	Problem
	Solution
	Discussion
	See Also

	1.17 Paging Through Content Without the Pages
	Problem
	Solution
	Discussion
	See Also

	1.18 Displaying Search Results While Typing
	Problem
	Solution
	Discussion
	See Also

	1.19 Routing Users to a Specific Controller and Action
	Problem
	Solution
	Discussion
	See Also

	1.20 Caching Results for Faster Page Loads
	Problem
	Solution
	Discussion
	See Also

	1.21 Going Further

